

OR

EVIDENCES

- or tae

BXISHANCH AND AMHRTEUTEF

OF THE DEITY,

COLLECTED FROM THE APPEARANOES OF NATUET.

1

by william paley, d. d. aroh-deacon dr carnisle.

HALLOWETJ
PRINTED AND PUBLISHED EX'çLAZTER \& co.

(14TH

CHAP. I.

gTATE OF TEE ARGUMENT.

In crossing a heath, suppose I pitched my foot against a stone, and were asked how the stone came to be there, I might possibly answer that, for any thing I knew to the contrary, it had lain there for ever; nor would it perhaps be very easy to shew the absurdity of this answer. But suppose I had found a watch upon the ground, and it should be inquired how the watch happened to be in that place, I should hardly think of the answer which I had before given, that for any thing, I knew, the watch might have always been there. Yet, why should not this answer serve for the watch, as well as for the stone? Why is it not as admissible in the second case, as in the first? For this reason, and for no other, viz. that, when we come to inspect the watch, we perceive, (what we could not discover in the stone,) that its several parts are framed and put together for a purpose, e. g. that they are so formed and adjusted as to produce motion, and that motion so regulated as to point out the hour of the day; that, if the several parts had been differently shaped from what they are, of a different size from what they are, or placed after any other manner, or in any other order, than that in which they are placed, either no motion at all would have been carried on in the machine, or none which would have answered the use, that is now served by it.-To reckon up a few of the plainest of these parts, and of their offices, all tending to one result : We see a cylindrical box containing a coiled elastic spring, which, by its endeavours to relax itself, turns round the box. We next observe a flexible chain, (antificially wrought for the sake of flexure,) communicating the action of the spring from the box to the fusee. We then find a series of wheels, the teeth of which catch in, and apply to each other, conducting the motion from the fusee
to the balance, and from the balance to the pointer; and at the same time, by the size and shape of those wheels, so regulating that motion, as to terminate in causing an inder, by an equable and measured progression, to pass over a given apace in a given time. We take notice that the wheels are made of brass, in order to keep them from rust ; the springs of steel, no other metal being so elastic ; that over the face of the watch there is placed a glass, a material employed in no other part of the work, but, in the room of which, if there had been any other than a transparent substance, the hour could not be seen without opening the case. This mechanism being observed, (it requires indeed an examination of the instrument, and perhaps soine previous knowledge of the subject, to perceive and understand it ; but being once, as we have said, observed and understood,) the inference, we think, is inevitable; that the watch must have had a maker; that there must have existed, at some time and at some place or other, an artificer or artificers who formed it for the purpose, which we find it actually to answer; who comprehended its construction, and designed its use.

1. Nor would it, I apprehend, weaken the conclusion, that we had never seen a watch made; that we had never known an artist capable of making one; that we were altogether incapable of executing such a piece of workmanship ourselves, or of understanding in what manner it was performed : all this being no more than what is true of some exquisite remains of ancient art, of some lost arts, and, to the generality of mankind, of the more curious productions of modern manufacture. Does one man in a million know how oval frames are turned ?Ignorance of this kind exalts our opinion of the unseen and unknown artist's skill, if he be unseen and unknown. but raises no doubt in our mind of the existence and agency of such an artist, at some former time, and in some place or other, Nor can I perceive that it varies at all the inference, whether the question arise concerning a human agent, or concerning an agent of a different species, or an agent possessing, in some respects, a different nature.
2. Neither, secondly, would it inyalidate our conclusion, that the watch sometimes went wrong, or that it seldom went exactly right. The purpose of the machinery.
the design, and the designer, might be evident, and in the case supposed would be evident, in whatever way we accounted for the irregularity of the movement, or whether we could account for it or not. It is not necessary that a machine be perfect, in order to shew with what design it was made: still less necessary, where the only question is, whether it were made with any design at all.
3. Nor, thirdly, would it bring any uncertainty into the argument, if there were a few parts of the watch, concerning which we could not discover, or had not yet discovered, in what manner they conduced to the general effect; or even some parts, concerning which we could not ascertain, whether they conduced to that effect in any manner whatever. For, as to the first branch of the case; if, by the loss, or disorder, or decay of the parts in question, the movement of the watch were found in fact to be stopped, or disturbed, or retarded, no doubt would remain in our minds as to the utility or intention of these parts, although we should be unable to investigate the manner according to which, or the connexion by which, the ultimate effect depended upon their action or assistance: and the more complex is the machine, the more likely is this obscurity to arise. Then, as to the second thing supposed, namel y, that there were parts which might be spared without prejudice to the movement of the watch, and that we had proved this by experiment; these superfluous parts, even if we were completely assured that they were such, would not vacate the reasoning which we had instituted concerning other parts. The indication of contrivance remained, with respect to thom, nearly as it was before.
4. Nor, fourthly, would any man in his senses think the existence of the watch, with its various machinery, accounted for, by being told that it was one out of possible combinations of material forms; that whatever he had found in the place where he found the watch, must have contained some internal configuration or other ; and that this configuration might be the structure now exhibited, viz. of the works of a watch, as well as a different struc ture.
5. Nor, fifthly, would it yield his inquiry more satisfaction to be answered, that there existed in things a principle or order, which had disposed the parts of the watch
into their present form. and situation. He never knew a watch made by the principle of order; nor can he even form to himself an idea of what is meant by a principle of order, distinct from the intelligence of the watch-maker.
6. Sixthly, he would be surprised to hear, that the mechanism of the watch was no proof of contrivance, only a motive to induce the mind to think so:
7. And not less surprised to be informed, that the watch in his hand was nothing more than the result of the laws of metalic nature. It is a perversion of language to assign any law, as the efficient, operative cause of any thing. A law presupposes an agent; for it is only the mode, according to which an agent proceeds: it implies a power; for it is the order, according to which that power acts. Without this agent, without this power, which are both distinct from itself, the law does nothing; is nothing. The expression, "the law of metallic nature," may sound strange and harsh to a philosophic ear, but it seems quite as justifiable as some others which are more familiar to him, such as " the law of vegetable nature," "the law of animal nature," or indeed as "the law of nature" in general when assigned as the cause of phænomena, in exclusion of agency and power; or when it is substituted into the place of these.
8. Neither, lastly, would our observer be driven out of his conclusion, or from his confidence in its truth, by being told that he knew nothing at all about the matter. He knows enough for his argument. He knows the utilty of the end : he knows the subserviency and adaptation of the means to the end. These points being known, his ignorance of other points, his doubts concerning other points, affects not the certainty of his reasoning. The consciousness of knowing little, need not beget a distrust of that which he does know.

CHAP. II.

STATE OF THE ARGUMENT CONTINUED.

Suppose, in the next place, that the person, who found the watch, should, after some time, discover, that, in addition to all the properties which he had hitherto observed
signer, that there may perhaps be other parts, certain muscles, for instance, or nerves, in the same eye, of the agency or effect of which we can give no account; any more than we should be inclined to doubt, or ought to doubt, about the construction of a telescope, viz. for what purpose it was constructed, or whether it were constructed at all, because there belonged to it certain screws and pin:, the use or action of which we did not comprehend. I take it to be a general way of infusing doubts and scruples into the mind, to recall to it its own ignorance, its own imbecility; to tell us that upon these subjects we know little; that little imperfectly; or rather, that we know nothing properly about the matter. These suggestions so fall in with our consciousnesses, as sometimes to produce a genefal distrust of our faculties and our conclusions. But this is an unfounded jealousy. The uncertainty of one thing, does not necessarily affect the certainty of another thing. Our ignorance of many points need not suspend our assurance of a few. Before we yield, in any particular instance, to the scepticism which this sort of insinuation would induce, we ought accurately to ascertain, whether our ignorance or doubt concern those precise points upon which our conclusion rests. Other poiuts are nothing. Our ignorance of other points may be of no consequence to these; though they be points, in various respects, of great importance. A just reasoner removes from his consideration, not only what he knows, but what he does not know, touching matters not strictly connected with his argument, i. e. not forming the very steps of his deduction : beyond these, his knowledge and his ignorance are alike irrelative.

CHAP. VI.

THE ARGUMENT CUMULATIVE.

Were there no example in the world of contrivance except that of the eye, it would be alone sufficient to support the conclusion which we draw from it, as to the necessity of an intelligent Creator. It could never be got rid of : because it could not be accountel for by any other supposition, which did not contradict all the principles we possess of knowledge; the principles according to which
things do, as often as they can be brought to the teat of experience, turn out to be true or false. Its coats and humours, constructed, as the lenses of a telescope are constructed, for the refraction of rays of light to a point, which forms the proper action of the organ; the prevision in its muscular tendons for turning its pupil to the objects, similar to that which is given to the telescope by screws, and upon which power of direction in the eye, the exercise of its office, as an optical instrument; depends; the further provision for its defence, for its constant lubricity and moisture, which we see in its sockets and its lids, in its glands for the secretion of the matter of tears, its outlet or communication with the mose for carrying off the liquid after the eye is washed with it; these provisions compose altogether an apparatus, a system of parts, a preparation of means, so manifest in their design, so exquisite is their contrivance, so successful in their issue, so precious and so infinitely beneficial in their use, as, in my opinion, to bear down all doubt that can be raised upon the subject. And what I wish, under the title of the present chapter, to observe, is, that, if other parts of nature were inaccessible tosour inquiries, or even if other parts of nature presepted nothing to our examination but disorder and confusion, the validity of this example would remain the same. If there were but one watch in the world, it would net be less certain that it had a maker. If we had never in our lives seen any but one single kind of hydraulic machine; yet, if of that one kind we understood the mechanism and use, we should be as perfectly assured that it proceeded from the hand, and thought, and skill of a workman, as if we visited a museum of the arts, and saw collected there twenty different kinds of machines for drawing water, or a thousand different kinds for other purposes. Of this point each machine is a proof, independently of the rest. So it is with the evidences of a divine agency. The proof is not a conclasion, which lies at the end of a chain of reasoning, of which chain each instance of contrivance is only a link, and of which, if one link fail, the whole falls; but it is an argument separately supplied by every separate example.-An error in stating an example affects only thet example-The argument is cumulative in the fullest sense of that term. The eye proves it without the ear; the ear without the eye. The proof in
each example is complete; for when the design of the part, and the conduciveness of its structure to that design, is shewn, the mind may set itself at rest : no future consideration can detract any thing from the force of the example.

CHAP. VII.

OF THE MEOHANLOAL AND IMMEOHANIOAL PARTS AND TUNOTIONS OF ANLMALS AND VEGETABLES.

Ir is not that every part of an animal or vegetable has not proceeded from a contriving mind; or that every part is not constructed with a view to its proper end and purpose, according to the laws belonging to, and governing the substance or the action made use of in that part; or that each part is not so constructed, as to effectuate its purpose whilst it operates according to these laws: but it is, because these laws themselves are not in all cases equally understood : or, what amounts to nearly the same thing, are not equally exemplified in more simple processes, and more simple machines; that we lay down the distinction, here proposed, between the inechanical parts, and other parts, of animals and vegetables.

For instance; the principle of muscular motion, viz. upon what cause the swelling of the belly of the muscle, and consequently contrantions of its tendons, either by an act of the will or by involuntary irritation, depends, is wholly unknown to us. The substance employed, whether it be fluid, gaseous, elastic, electrical, or none of these, or nothing resembling these, is also unknown to us: of course the laws belonging to that substance, and which regulate its action, are unknown to us. We see nothing similar to this contraction in any machine which we can make, or any process which we can execute. So far, (it is confessed,) we are in ignorance : but no further. This power and principle, from whatever cause it proceeds, being assumed, the collocation of the fibres to receive the principle, the disposition of the muscles for the use and application of the power, is mechanical ; and is as intelligible as the adjustment of the wires and strings by which a puppet is moved. We see, therefore, as far as respects the sabject before us, what is not mechanical in the ani-

