STAT 30900 1 (Autumn 2021) Mathematical Computation I: Matrix Computation Course

This is an introductory course on numerical linear algebra. The course will present a global overview of a number of topics, from classical to modern to state-of-the-art. The fundamental principles and techniques will be covered in depth but towards the end of the course we will also discuss some exciting recent developments.

Numerical linear algebra is quite different from linear algebra. We
will be much less interested in algebraic results that follow from the axiomatic definitions of fields and vector spaces but much more interested in analytic results that hold only over the real and complex fields. The main objects of interest are real- or complex-valued matrices, which may come from differential operators, integral transforms, bilinear and quadratic forms, boundary and coboundary maps, Markov chains, graphs, metrics, correlations, hyperlink structures, cell phone signals, DNA microarray measurements, movie ratings by viewers, friendship relations in social networks, etc. Numerical linear algebra provides the mathematical and algorithmic tools for matrix problems that arise in engineering, scientific, and statistical applications.