Convex Optimization

TTIC 31070 / CMSC 35470 / BUSF 36903 / STAT 31015
Prof. Nati Srebro

Lecture 1.
Optimization Problems

Optimization Problems
(P) min fo(x)

xXERM
S.t. fi(x) < b; i=1..m

for f1) or fm: R® = R U {400}

Examples:

* Minimize cost (maximize profit) while achieving goals
* Find maximum likelihood parameters

* Minimize error of model on data

* Find minimum energy configuration

Optimization Problems
(P) min fo(x)

xXERM
S.t. fi(x) < b; i=1..m

for fis voos frn: R = R U {00}

* Def:x € R" is feasible for (P) iff it satisfies f;(x) < b; V;=1_m and x € dom(fp)
f

* Def: The optimal value of (P) is: fo(x) <o
p* =inf {fo(x) | fi(x) < b; Vi=1. m}

 Def: x* € R"is an optimum (aka optimal point) if it is feasible and f,(x*) = p*

: min —log(x) : 2 :
min x log(x min log(x< + 1 min x| —1
g | | T T8 g0x? + 1) [l - 11,
(0,) feasible (0,2] feasible R feasible R feasible
p-=-—1/e p” = log(2) p*=0 p"=0

x*=1/e x* =2 x*=0 x* €[—1,+1]

Optimization Problems
(P) min fo(x)

xXERM
S.t. fi(x) < b; i=1..m

for fis voos frn: R = R U {00}

* Def:x € R" is feasible for (P) iff it satisfies f;(x) < b; V=1 _m and x € dom(f,)
f

J

* Def: The optimal value of (P) is: fo(x) <o
p* =inf {fo(x) | fi(x) < b; Vi=1. m}

 Def: x* € R"is an optimum (aka optimal point) if it is feasible and f,(x*) = p*

* Def: We say (P) is infeasible, and p* = oo, if no point x € R" is feasible

min 1/x

* Def: We say (P) is unbounded from below if p* = —oo

min log(x — 5) min X min 5 — x? s.t. x>3
S.t. x < 2 S. L. x=-1 s.t. x=0 (3,) feasible
infeasible —x=—1 [0, o) feasible p*=0

p* = infeasible, p* = o p* = —o0 no x*

Example: Lemonade Stand

profit(x)=(x — 1)100e~>*

min f (x) f(x) = —(x —1)100e™>*

0 =f'(x*) = =100 (e~ — 5¢~%*(x — 1)) = =100(6 — 5x*)e~>*
= x*=12,p" = —0.0496

Example: Least Squares

xXERN

m
min Z((ai,x) — b))% = ||ATx — b||?
=1

e Data: a; € R™",b; € R(4A = [aq, ..., a,,,] € R™™, b € R™)

e Optimization variable: x

0=Vf(x*)=24(ATx* —b) > AATx* = Ab > x* = (AAT)"14b

Example: €1 Regression

xERMN

m
min Zl(ai,x) — bl = |ATx - b||
=1

* Rewrite as a linear program:

- m
min i1 Zj

x € R", zeR™
S.t. —z; <(a;,x)—b; <z, i=1..m

Example

min 100(1 — x)(1 — 3logx)
S. t. x =1
x <13

x* = 1.18098 ...

S S (O S S S U NSRS N
106 110 115 120 125 130

Optimization Problems

(P) min fo(x)

XERM
S.t. fi(x) < b; i=1..m

fO'fli ""fm: R"™ - RU {OO}

Def: x € R™ is feasible for (P) iff it satisfies f;(x) < b; V=1 ., and x € dom(f,)

Def: The optimal value of (P) is:

p* =inf {fo(x) | fi(x) < b; Vi=1._m}
or p* = oo if no feasible point exists

Def: x* € R" is an optimum (aka optimal point) if it is feasible and f,(x*) = p*

Def: x € R is e-suboptimal if it is feasible and fo(x) < p* + ¢, i.e.
Vfeasible x' fo(*) < fo(x') + €

How did | find an e-suboptimum?

min 100(1 — x)(1 — 3logx)
S. t. x =1
x <13

x* = 1.18098 ...

S S (O S S S U NSRS N
106 110 115 120 125 130

Grid Search

Igleiﬂg fo(x)

s.t. MIN < x < MAX

Parameter: § > 0
Method: Evaluate fy(x) at
x € {MIN,MIN + 6, MIN + 26, ..., MIN + {

returning minimum

MAX — MIN
sl

Analysis: We will always have ¥ in the grid with |¥ — x*| < §, and so:
1fo(B) — fox) < [x—x*[-[f'G)]<6-D
For X return by Grid Search we have:
fo(®) < fo(X) < fo(x™) + 6D

. € .
Conclusion: If ¥V n<x<max|fo (X)| < D, and we use § = —, We can find
(MAX—-MIN)D

€

an e-suboptimal solution using evaluations.

Grid Search

Only depends on specific forms of access (oracles) to f, not on the form
of the function

* In this case: evaluation oracle x = f(x)
e Lateron, also x » Vf(x), x » V2f(x), others

Runtime guarantee (on #access and operations) in terms of specific
assumptions / quantities, and desired €

* Inthis case: |f'| < D (Lipschitz assumption)

But, disappointing runtime:

e 0 e) means exponential in #digits of precision

_ n
* In higher dimension, grid of size (M) ensures ||x — x*|| < §/n=>

. . (MAX-MIN n
runtime is (f \/ﬁD)

Can’t do any better without more assumptions:

Theorem: for any € and any algorithm making < 1/;. evaluation queries, there
exists a function f:[0,1] = R, with [f’| < 1 for which the algorithm fails to find a
e-suboptimal solution.

Bisection Search

min f)

s.t. MIN < x < MAX
* Assume |f'| < D and f is convex

* Accessto f(x), f (x)

nit: x.” = MIN,x{? = MAX
_ e
2

Iff’(x(k)) <0: x£k+1) « x ()

X HHD 500

Iff’(x(k)) > 0:

Bisection Search

* Claim: If f(x) is convex and YV y<x<maxf (x) < D, then
f(x®) < p* + D(MAX — MIN)27¥

* Conclusion: #iterations, and therefor #evals and runtime, to
find e-suboptimal solution:

MAX — MIN
O | log . D

Bisection Search

min f(x)

xXER
s.t. MIN < x < MAX

nit: x'” = MIN,x{” = MAX

(0),..(0)
X() _xL +xH

If ” (k) _)H < —, stop

If £'(x)) = 0, stop

If £/ (x®) < 0:

Iter:

X FD 00

If £ (x) > 0: (k+1) - xik)

(k+1) (k)
Xy

Convex Optimization Problems

(P) min fo(x)
s. t. fix)<b; i=1..m

* Def: (P) is a convex optimization problem if f,, f1, ..., f; are convex
functions

* In this course: methods for solving convex optimization
problems of form (P), based on oracle access to
fo, f1, --+» fm, With guarantees based on their properties

Optimization vs Solving Equations

(P) min f(x)

XERNM

e Claim (Optimality Condition for Unconstrained Optimization):
If f(x) is convex and differentiable in its domain, then

x* is optimal iff Vf(x*) = 0

e Conclusion:
Minimizing f(x) < solving Vf(x) =0

* As we shall see later—also for constrained optimization

About the Course

Methods for solving convex optimization problems, based on
oracle access, with guarantees based on their properties

* And also a few more specific methods...

Understanding different optimization methods
* Understanding their derivation
* When are they appropriate
e Guarantees (a few proofs, not a core component)

Working and reasoning about optimization problems
e Optimality conditions
* Duality
e Standard forms: LP, QP, SDP, etc

Prerequisites:
* Linear Algebra (vector fields, linear transformations, matrices, eigenvalues)

e Multi-dimensional Calculus (gradients, Hessians, partial derivatives,
directional derivatives)

* Some background in Algorithms (runtime analysis, proving correctness of
an algorithm), and programming

Course Structure

TAs: Blake Woodworth (head), Haoyang Liu, Greg Naitzat, Angela Wu
Contact us: convex-optimization-2018-staff@ttic.edu

Communication, homework, lecture slides, help forum via course page on canvas
If not registered, please complete webform

Lectures Mondays and Wednesdays 12:05PM

Recitations (choose one): Monday 4-5PM TTIC 530
OR Tuesday 4:30-5:30 Ryerson 276

Homeworks due every Friday (50% of the grade)

Some Python programming, mostly completing provided code (can use other languages, eg MATLAB,
R, Julia, etc, if you prefer—no code or support provided)

TA office hours: Tuesday, Wednesday, Thursday and Friday (see website)

7-8 homeworks (50% of grade), final (50% of grade)

Books:
* Boyd and Vandenberghe “Convex Optimization” (about 70% of the class)
* Nocedal and Wright “Numerical Optimization”
* Nemirovski “Efficient Methods in Convex Programming”

We are looking for additional graders

Homework #1

 Available now, due next Friday 1/12, back 1/17
* Material covered: this lecture + Monday’s lecture (convexity)

» Used also to evaluate control of prerequisites and readiness to take
class

* A,B: satisfactory performance; prepared to take the class

* C: borderline; may take class but should consider difficulty
and/or preparation

* Below C: advised to not take class this quarter

* For this homework only: no collaboration on required questions
(OK to collaborate on future homework)

