Convex Optimization TTIC 31070 / CMSC 35470 / BUSF 36903 / STAT 31015

Prof. Nati Srebro

Lecture 1: Optimization Problems

 $(P) \quad \min_{x \in \mathbb{R}^n} \qquad f_0(x)$

s.t. $f_i(x) \le b_i$ $i = 1 \dots m$

$$f_0, f_1, \dots, f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$

Examples:

- Minimize cost (maximize profit) while achieving goals
- Find maximum likelihood parameters
- Minimize error of model on data
- Find minimum energy configuration

 $(P) \quad \min_{x \in \mathbb{R}^n} \qquad f_0(x)$

s.t. $f_i(x) \le b_i$ $i = 1 \dots m$

$$f_0, f_1, \dots, f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$

- Def: $x \in \mathbb{R}^n$ is <u>feasible</u> for (P) iff it satisfies $f_i(x) \le b_i \forall_{i=1...m}$ and $x \in dom(f_0)$
- Def: The <u>optimal value of</u> (P) is: $f_0(x) < \infty$ $p^* = \inf \{f_0(x) \mid f_i(x) \le b_i \forall_{i=1...m}\}$
- Def: $x^* \in \mathbb{R}^n$ is an <u>optimum</u> (aka <u>optimal point</u>) if it is feasible and $f_0(x^*) = p^*$

$\min x \log(x)$	$\begin{array}{ll} \min & -\log(x) \\ s.t. & x \le 2 \end{array}$	min $\log(x^2 + 1)$	min $[x - 1]_+$		
$(0,\infty)$ feasible	$(0,2] \text{ feasible}$ $n^* = \log(2)$	\mathbb{R} feasible	\mathbb{R} feasible		
$p^{*} = -1/e$ $x^{*} = 1/e$	$p = \log(2)$ $x^* = 2$	$\begin{array}{l} p &= 0 \\ x^* &= 0 \end{array}$	p = 0 $x^* \in [-1, +1]$		

 $(P) \quad \min_{x \in \mathbb{R}^n} \qquad f_0(x)$

s.t.

 $f_i(x) \le b_i \qquad i = 1 \dots m$

$$f_0, f_1, \dots, f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$

• Def: $x \in \mathbb{R}^n$ is <u>feasible</u> for (P) iff it satisfies $f_i(x) \le b_i \forall_{i=1...m}$ and $x \in dom(f_0)$

• Def: The optimal value of (P) is:
$$f_0(x) < \infty$$

 $p^* = \inf \{f_0(x) \mid f_i(x) \le b_i \forall_{i=1...m}\}$

- Def: $x^* \in \mathbb{R}^n$ is an <u>optimum</u> (aka <u>optimal point</u>) if it is feasible and $f_0(x^*) = p^*$
- Def: We say (P) is infeasible, and $p^* = \infty$, if no point $x \in \mathbb{R}^n$ is feasible

• Det: We say (P) is unbounded from below if $n^*\infty$										
	$= Del. We say (1) is ultibulided from below if p = \infty$								min	1/x
	min	$\log(x-5)$	min	X		min	$5 - x^2$		s.t.	$x \ge 3$
	s.t.	$x \leq 2$	<i>s</i> . <i>t</i> .	$x \leq -1$		s.t.	$x \ge 0$		(3,∞)	feasible
infeasible			$-x \leq -1$		$[0,\infty)$ feasible			$p^*=0$		
$p^*=\infty$		infeasi	infeasible, $p^*=\infty$		$p^*=-\infty$			no x^*		

Example: Lemonade Stand

$$profit(x) = (x - 1)100e^{-5x}$$

$$\min_{x} f(x) \qquad f(x) = -(x-1)100e^{-5x}$$

$$0 = f'(x^*) = -100 \left(e^{-5x} - 5e^{-5x}(x-1) \right) = -100(6 - 5x^*)e^{-5x}$$

$$\Rightarrow x^* = 1.2, p^* = -0.0496$$

Example: Least Squares

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m (\langle a_i, x \rangle - b_i)^2 = \|A^{\mathsf{T}} x - b\|^2$$

- Data: $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$ ($A = [a_1, \dots, a_m] \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^m$)
- Optimization variable: x

 $0 = \nabla f(x^*) = 2A(A^{\mathsf{T}}x^* - b) \twoheadrightarrow AA^{\mathsf{T}}x^* = Ab \twoheadrightarrow x^* = (AA^{\mathsf{T}})^{-1}Ab$

Example: ℓ_1 Regression

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m |\langle a_i, x \rangle - b_i| = \|A^{\mathsf{T}}x - b\|_1$$

• Rewrite as a linear program:

$$\begin{array}{ll} \min & \sum_{i=1}^{m} z_i \\ x \in \mathbb{R}^n, z \in \mathbb{R}^m \\ s.t. & -z_i \leq \langle a_i, x \rangle - b_i \leq z_i \quad i = 1..m \end{array}$$

Example

$$x^* = 1.18098 \dots$$

(P) $\min_{x \in \mathbb{R}^n} f_0(x)$ s.t. $f_i(x) \le b_i \qquad i = 1..m$

$$f_0, f_1, \dots, f_m \colon \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$

- Def: $x \in \mathbb{R}^n$ is <u>feasible</u> for (P) iff it satisfies $f_i(x) \le b_i \forall_{i=1...m}$ and $x \in dom(f_0)$
- Def: The <u>optimal value of</u> (P) is: $p^* = \inf \{f_0(x) \mid f_i(x) \le b_i \forall_{i=1...m}\}$ or $p^* = \infty$ if no feasible point exists
- Def: $x^* \in \mathbb{R}^n$ is an <u>optimum</u> (aka <u>optimal point</u>) if it is feasible and $f_0(x^*) = p^*$
- Def: $x \in \mathbb{R}$ is ϵ -suboptimal if it is feasible and $f_0(x) \le p^* + \epsilon$, i.e. $\forall_{\text{feasible } x'} f_0(x) \le f_o(x') + \epsilon$

How did I find an ϵ -suboptimum?

min
$$100(1-x)(1-3\log x)$$

s.t. $x \ge 1$
 $x \le 1.3$

$$x^* = 1.18098 \dots$$

Grid Search

 $\min_{\substack{x \in \mathbb{R} \\ s.t.}} \quad f_0(x) \\ MIN \le x \le MAX$

- Parameter: $\delta > 0$
- Method: Evaluate $f_0(x)$ at $x \in \{MIN, MIN + \delta, MIN + 2\delta, ..., MIN + \left\lfloor \frac{MAX - MIN}{\delta} \right\rfloor \delta\}$ returning minimum
- Analysis: We will always have \tilde{x} in the grid with $|\tilde{x} x^*| \le \delta$, and so: $|f_0(\tilde{x}) - f_0(x^*)| \le |x - x^*| \cdot |f'(\overline{x})| \le \delta \cdot D$
- For \hat{x} return by Grid Search we have: $f_0(\hat{x}) \le f_0(\hat{x}) \le f_0(x^*) + \delta D$
- Conclusion: If $\forall_{MIN \le x \le MAX} |f'_0(x)| \le D$, and we use $\delta = \frac{\epsilon}{D}$, we can find an ϵ -suboptimal solution using $\frac{(MAX MIN)D}{\epsilon}$ evaluations.

Grid Search

- Only depends on specific forms of access (*oracles*) to *f*, not on the form of the function
 - In this case: evaluation oracle $x \mapsto f(x)$
 - Later on, also $x \mapsto \nabla f(x), x \mapsto \nabla^2 f(x)$, others
- Runtime guarantee (on #access and operations) in terms of specific assumptions / quantities, and desired ϵ
 - In this case: $|f'| \leq D$ (Lipschitz assumption)
- But, disappointing runtime:
 - $O\left(\frac{1}{\epsilon}\right)$ means exponential in #digits of precision
 - In higher dimension, grid of size $\left(\frac{MAX-MIN}{\delta}\right)^n$ ensures $||x x^*|| \le \delta\sqrt{n} \Rightarrow$ runtime is $\left(\frac{MAX-MIN}{\epsilon}\sqrt{n}D\right)^n$
- Can't do any better without more assumptions:

Theorem: for any ϵ and any algorithm making $< 1/3\epsilon$ evaluation queries, there exists a function $f: [0,1] \to \mathbb{R}$, with $|f'| \le 1$ for which the algorithm fails to find a ϵ -suboptimal solution.

Bisection Search

$$\min_{\substack{x \in \mathbb{R} \\ s.t.}} \quad f(x) \\ MIN \le x \le MAX$$

- Assume $|f'| \leq D$ and f is convex
- Access to f(x), f'(x)

Init:
$$x_L^{(0)} = MIN, x_H^{(0)} = MAX$$

Iter: $x^{(k)} = \frac{x_L^{(k)} + x_H^{(k)}}{2}$
If $f'(x^{(k)}) = 0$, stop
If $f'(x^{(k)}) < 0$: $x_L^{(k+1)} \leftarrow x^{(k)}$
 $x_H^{(k+1)} \leftarrow x_H^{(k)}$
If $f'(x^{(k)}) > 0$: $x_L^{(k+1)} \leftarrow x_L^{(k)}$
 $x_H^{(k+1)} \leftarrow x_L^{(k)}$

Bisection Search

- Claim: If f(x) is convex and $\forall_{MIN \le x \le MAX} f'(x) \le D$, then $f(x^{(k)}) \le p^* + D(MAX MIN)2^{-k}$
- Conclusion: #iterations, and therefor #evals and runtime, to find ε-suboptimal solution:

$$O\left(\log\left(\frac{MAX - MIN}{\epsilon}D\right)\right)$$

Bisection Search

$$\min_{x \in \mathbb{R}} f(x) \\ s.t. \quad MIN \le x \le MAX$$

Init:
$$x_{L}^{(0)} = MIN, x_{H}^{(0)} = MAX$$

Iter: $x^{(k)} = \frac{x_{L}^{(0)} + x_{H}^{(0)}}{2}$
If $\left\| x_{L}^{(k)} - x_{H}^{(k)} \right\| \le \frac{\epsilon}{D}$, stop
If $f'(x^{(k)}) = 0$, stop
If $f'(x^{(k)}) < 0$: $x_{L}^{(k+1)} \leftarrow x^{(k)}$
 $x_{H}^{(k+1)} \leftarrow x_{H}^{(k)}$
If $f'(x^{(k)}) > 0$: $x_{L}^{(k+1)} \leftarrow x_{L}^{(k)}$
 $x_{H}^{(k+1)} \leftarrow x_{L}^{(k)}$

Convex Optimization Problems

(P) $\min_{\substack{x \in \mathbb{R}^n \\ s.t.}} f_0(x)$ $f_i(x) \le b_i \quad i = 1 \dots m$

• Def: (P) is a <u>convex optimization problem</u> if f_0, f_1, \dots, f_m are convex functions

• In this course: methods for solving convex optimization problems of form (P), based on oracle access to f_0, f_1, \dots, f_m , with guarantees based on their properties

Optimization vs Solving Equations

 $(P) \qquad \min_{x \in \mathbb{R}^n} f(x)$

Claim (Optimality Condition for Unconstrained Optimization):
 If f(x) is convex and differentiable in its domain, then

 x^* is optimal iff $\nabla f(x^*) = 0$

• Conclusion:

Minimizing $f(x) \Leftrightarrow$ solving $\nabla f(x) = 0$

• As we shall see later—also for constrained optimization

About the Course

- Methods for solving convex optimization problems, based on oracle access, with guarantees based on their properties
 - And also a few more specific methods...
- Understanding different optimization methods
 - Understanding their derivation
 - When are they appropriate
 - Guarantees (a few proofs, not a core component)
- Working and reasoning about optimization problems
 - Optimality conditions
 - Duality
 - Standard forms: LP, QP, SDP, etc
- Prerequisites:
 - Linear Algebra (vector fields, linear transformations, matrices, eigenvalues)
 - Multi-dimensional Calculus (gradients, Hessians, partial derivatives, directional derivatives)
 - Some background in Algorithms (runtime analysis, proving correctness of an algorithm), and programming

Course Structure

TAs: Blake Woodworth (head), Haoyang Liu, Greg Naitzat, Angela Wu Contact us: convex-optimization-2018-staff@ttic.edu

Communication, homework, lecture slides, help forum via course page on canvas If not registered, please complete webform

- Lectures Mondays and Wednesdays 12:05PM
- Recitations (choose one): Monday 4-5PM TTIC 530 OR Tuesday 4:30-5:30 Ryerson 276
- Homeworks due every Friday (50% of the grade) Some Python programming, mostly completing provided code (can use other languages, eg MATLAB, R, Julia, etc, if you prefer—no code or support provided)
- TA office hours: Tuesday, Wednesday, Thursday and Friday (see website)
- 7-8 homeworks (50% of grade), final (50% of grade)
- Books:
 - Boyd and Vandenberghe "Convex Optimization" (about 70% of the class)
 - Nocedal and Wright "Numerical Optimization"
 - Nemirovski "Efficient Methods in Convex Programming"

We are looking for additional graders

Homework #1

- Available now, due next Friday 1/12, back 1/17
- Material covered: this lecture + Monday's lecture (convexity)
- Used also to evaluate control of prerequisites and readiness to take class
 - A,B: satisfactory performance; prepared to take the class
 - C: borderline; may take class but should consider difficulty and/or preparation
 - Below C: advised to not take class this quarter
- For this homework only: no collaboration on required questions (OK to collaborate on future homework)