
Convex Optimization
TTIC 31070 / CMSC 35470 / BUSF 36903 / STAT 31015

Prof. Nati Srebro

Lecture 1:
Optimization Problems

Optimization Problems
(𝑃) min

𝑥∈ℝ𝑛
𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 𝑏𝑖 𝑖 = 1…𝑚

𝑓0, 𝑓1, … , 𝑓𝑚: ℝ
𝑛 → ℝ ∪ {+∞}

Examples:

• Minimize cost (maximize profit) while achieving goals

• Find maximum likelihood parameters

• Minimize error of model on data

• Find minimum energy configuration

Optimization Problems
(𝑃) min

𝑥∈ℝ𝑛
𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 𝑏𝑖 𝑖 = 1…𝑚

𝑓0, 𝑓1, … , 𝑓𝑚: ℝ
𝑛 → ℝ∪ {∞}

• Def: 𝑥 ∈ ℝ𝑛 is feasible for (𝑃) iff it satisfies 𝑓𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖=1…𝑚 and 𝑥 ∈ 𝑑𝑜𝑚(𝑓0)

• Def: The optimal value of (𝑃) is:
𝑝∗ = inf 𝑓0 𝑥 𝑓𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖=1…𝑚

• Def: 𝑥∗ ∈ ℝ𝑛 is an optimum (aka optimal point) if it is feasible and 𝑓0 𝑥∗ = 𝑝∗

𝑓0 𝑥 < ∞

min 𝑥 log(𝑥) min 𝑥 − 1 +
min −log 𝑥
𝑠. 𝑡. 𝑥 ≤ 2

min log(𝑥2 + 1)

(0,∞) feasible 0,2 feasible ℝ feasible
𝑝∗ = −1/𝑒
𝑥∗ = 1/𝑒

𝑝∗ = log(2)
𝑥∗ = 2

ℝ feasible
𝑝∗ = 0

𝑥∗ ∈ [−1,+1]
𝑝∗ = 0
𝑥∗ = 0

Optimization Problems
(𝑃) min

𝑥∈ℝ𝑛
𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 𝑏𝑖 𝑖 = 1…𝑚

𝑓0, 𝑓1, … , 𝑓𝑚: ℝ
𝑛 → ℝ∪ {∞}

• Def: 𝑥 ∈ ℝ𝑛 is feasible for (𝑃) iff it satisfies 𝑓𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖=1…𝑚 and 𝑥 ∈ 𝑑𝑜𝑚(𝑓0)

• Def: The optimal value of (𝑃) is:
𝑝∗ = inf 𝑓0 𝑥 𝑓𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖=1…𝑚

• Def: 𝑥∗ ∈ ℝ𝑛 is an optimum (aka optimal point) if it is feasible and 𝑓0 𝑥∗ = 𝑝∗

• Def: We say (𝑃) is infeasible, and 𝑝∗ = ∞, if no point 𝑥 ∈ ℝ𝑛 is feasible

• Def: We say (𝑃) is unbounded from below if 𝑝∗ = −∞

𝑓0 𝑥 < ∞

min 5 − 𝑥2

𝑠. 𝑡. 𝑥 ≥ 0

min 1/𝑥
𝑠. 𝑡. 𝑥 ≥ 3min 𝑥

𝑠. 𝑡. 𝑥 ≤ −1
−𝑥 ≤ −1

min log 𝑥 − 5
𝑠. 𝑡. 𝑥 ≤ 2

𝑝∗ = ∞
infeasible

infeasible, 𝑝∗ = ∞ 𝑝∗ = −∞

(3,∞) feasible

[0,∞) feasible
no 𝑥∗
𝑝∗ = 0

Example: Lemonade Stand

profit(𝑥)= 𝑥 − 1 100𝑒−5𝑥

min
𝑥

𝑓(𝑥) 𝑓 𝑥 = − 𝑥 − 1 100𝑒−5𝑥

0 = 𝑓′ 𝑥∗ = −100 𝑒−5𝑥 − 5𝑒−5𝑥 𝑥 − 1 = −100 6 − 5𝑥∗ 𝑒−5𝑥

 𝑥∗ = 1.2, 𝑝∗ = −0.0496

Example: Least Squares

min
𝑥∈ℝ𝑛

𝑖=1

𝑚

𝑎𝑖 , 𝑥 − 𝑏𝑖
2 = 𝐴⊤𝑥 − 𝑏 2

• Data: 𝑎𝑖 ∈ ℝ𝑛, 𝑏𝑖 ∈ ℝ (𝐴 = 𝑎1, … , 𝑎𝑚 ∈ ℝ𝑛×𝑚, 𝑏 ∈ ℝ𝑚)

• Optimization variable: 𝑥

0 = 𝛻𝑓 𝑥∗ = 2𝐴(𝐴⊤𝑥∗ − 𝑏) 𝐴𝐴⊤𝑥∗ = 𝐴𝑏 𝑥∗ = 𝐴𝐴⊤ −1𝐴𝑏

Example: ℓ1 Regression

min
𝑥∈ℝ𝑛

𝑖=1

𝑚

𝑎𝑖 , 𝑥 − 𝑏𝑖 = 𝐴⊤𝑥 − 𝑏 1

• Rewrite as a linear program:

min σ𝑖=1
𝑚 𝑧𝑖

𝑥 ∈ ℝ𝑛, 𝑧 ∈ ℝ𝑚

𝑠. 𝑡. −𝑧𝑖 ≤ 𝑎𝑖 , 𝑥 − 𝑏𝑖 ≤ 𝑧𝑖 𝑖 = 1. .𝑚

Example

min 100 1 − 𝑥 1 − 3 log 𝑥
𝑠. 𝑡. 𝑥 ≥ 1

𝑥 ≤ 1.3

𝑥∗ = 1.18098…

1.05 1.10 1.15 1.20 1.25 1.30

8

6

4

2

Optimization Problems

(𝑃) min
𝑥∈ℝ𝑛

𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 𝑏𝑖 𝑖 = 1. .𝑚

𝑓0, 𝑓1, … , 𝑓𝑚: ℝ
𝑛 → ℝ∪ {∞}

• Def: 𝑥 ∈ ℝ𝑛 is feasible for (𝑃) iff it satisfies 𝑓𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖=1…𝑚 and 𝑥 ∈ 𝑑𝑜𝑚(𝑓0)

• Def: The optimal value of (𝑃) is:
𝑝∗ = inf 𝑓0 𝑥 𝑓𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖=1…𝑚

or 𝑝∗ = ∞ if no feasible point exists

• Def: 𝑥∗ ∈ ℝ𝑛 is an optimum (aka optimal point) if it is feasible and 𝑓0 𝑥∗ = 𝑝∗

• Def: 𝒙 ∈ ℝ is 𝝐-suboptimal if it is feasible and 𝒇𝟎 𝒙 ≤ 𝒑∗ + 𝝐, i.e.
∀feasible 𝒙′𝒇𝟎 𝒙 ≤ 𝒇𝒐 𝒙′ + 𝝐

How did I find an 𝜖-suboptimum?

min 100 1 − 𝑥 1 − 3 log 𝑥
𝑠. 𝑡. 𝑥 ≥ 1

𝑥 ≤ 1.3

𝑥∗ = 1.18098…

1.05 1.10 1.15 1.20 1.25 1.30

8

6

4

2

Grid Search
min
𝑥∈ℝ

𝑓0(𝑥)

𝑠. 𝑡. 𝑀𝐼𝑁 ≤ 𝑥 ≤ 𝑀𝐴𝑋

• Parameter: 𝛿 > 0

• Method: Evaluate 𝑓0(𝑥) at

𝑥 ∈ {𝑀𝐼𝑁,𝑀𝐼𝑁 + 𝛿,𝑀𝐼𝑁 + 2𝛿,… ,𝑀𝐼𝑁 +
𝑀𝐴𝑋 −𝑀𝐼𝑁

𝛿
𝛿}

returning minimum

• Analysis: We will always have 𝑥 in the grid with 𝑥 − 𝑥∗ ≤ 𝛿, and so:
𝑓0 𝑥 − 𝑓0 𝑥∗ ≤ 𝑥 − 𝑥∗ ⋅ 𝑓′ 𝑥 ≤ 𝛿 ⋅ 𝐷

• For ො𝑥 return by Grid Search we have:
𝑓0 ො𝑥 ≤ 𝑓0 𝑥 ≤ 𝑓0 𝑥∗ + 𝛿𝐷

• Conclusion: If ∀𝑀𝐼𝑁≤𝑥≤𝑀𝐴𝑋 𝑓0
′(𝑥) ≤ 𝐷, and we use 𝛿 =

𝜖

𝐷
, we can find

an 𝜖-suboptimal solution using
𝑀𝐴𝑋−𝑀𝐼𝑁 𝐷

𝜖
evaluations.

Grid Search
• Only depends on specific forms of access (oracles) to 𝑓, not on the form

of the function
• In this case: evaluation oracle 𝑥 ↦ 𝑓(𝑥)
• Later on, also 𝑥 ↦ 𝛻𝑓(𝑥), 𝑥 ↦ 𝛻2𝑓(𝑥), others

• Runtime guarantee (on #access and operations) in terms of specific
assumptions / quantities, and desired 𝜖
• In this case: 𝑓′ ≤ 𝐷 (Lipschitz assumption)

• But, disappointing runtime:

• 𝑂
1

𝜖
means exponential in #digits of precision

• In higher dimension, grid of size
𝑀𝐴𝑋−𝑀𝐼𝑁

𝛿

𝑛
ensures 𝑥 − 𝑥∗ ≤ 𝛿 𝑛

runtime is
𝑀𝐴𝑋−𝑀𝐼𝑁

𝜖
𝑛𝐷

𝑛

• Can’t do any better without more assumptions:
Theorem: for any 𝜖 and any algorithm making < Τ1 3𝜖 evaluation queries, there
exists a function 𝑓: 0,1 → ℝ, with 𝑓′ ≤ 1 for which the algorithm fails to find a
𝜖-suboptimal solution.

Bisection Search

min
𝑥∈ℝ

𝑓(𝑥)

𝑠. 𝑡. 𝑀𝐼𝑁 ≤ 𝑥 ≤ 𝑀𝐴𝑋

• Assume 𝑓′ ≤ 𝐷 and 𝑓 is convex

• Access to 𝑓(𝑥), 𝑓′(𝑥)

Init: 𝑥𝐿
(0)

= 𝑀𝐼𝑁, 𝑥𝐻
0
= 𝑀𝐴𝑋

Iter: 𝑥 𝑘 =
𝑥𝐿

𝑘
+𝑥𝐻

𝑘

2

If 𝑓′ 𝑥 𝑘 = 0, stop

If 𝑓′ 𝑥 𝑘 < 0: 𝑥𝐿
𝑘+1

← 𝑥 𝑘

𝑥𝐻
𝑘+1

← 𝑥𝐻
𝑘

If 𝑓′ 𝑥 𝑘 > 0: 𝑥𝐿
𝑘+1

← 𝑥𝐿
𝑘

𝑥𝐻
𝑘+1

← 𝑥
𝑘

Bisection Search

• Claim: If 𝑓(𝑥) is convex and ∀𝑀𝐼𝑁≤𝑥≤𝑀𝐴𝑋𝑓
′ 𝑥 ≤ 𝐷, then

𝑓 𝑥 𝑘 ≤ 𝑝∗ + 𝐷 𝑀𝐴𝑋 −𝑀𝐼𝑁 2−𝑘

• Conclusion: #iterations, and therefor #evals and runtime, to
find 𝜖-suboptimal solution:

𝑂 log
𝑀𝐴𝑋 −𝑀𝐼𝑁

𝜖
𝐷

Bisection Search

min
𝑥∈ℝ

𝑓(𝑥)

𝑠. 𝑡. 𝑀𝐼𝑁 ≤ 𝑥 ≤ 𝑀𝐴𝑋

Init: 𝑥𝐿
(0)

= 𝑀𝐼𝑁, 𝑥𝐻
0
= 𝑀𝐴𝑋

Iter: 𝑥 𝑘 =
𝑥𝐿

0
+𝑥𝐻

0

2

If 𝑥𝐿
𝑘
− 𝑥𝐻

𝑘
≤

𝜖

𝐷
, stop

If 𝑓′ 𝑥 𝑘 = 0, stop

If 𝑓′ 𝑥 𝑘 < 0: 𝑥𝐿
𝑘+1

← 𝑥 𝑘

𝑥𝐻
𝑘+1

← 𝑥𝐻
𝑘

If 𝑓′ 𝑥 𝑘 > 0: 𝑥𝐿
𝑘+1

← 𝑥𝐿
𝑘

𝑥𝐻
𝑘+1

← 𝑥
𝑘

Convex Optimization Problems

(𝑃) min
𝑥∈ℝ𝑛

𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 𝑏𝑖 𝑖 = 1…𝑚

• Def: (𝑃) is a convex optimization problem if 𝑓0, 𝑓1, … , 𝑓𝑚 are convex
functions

• In this course: methods for solving convex optimization
problems of form 𝑃 , based on oracle access to
𝑓0, 𝑓1, … , 𝑓𝑚, with guarantees based on their properties

Optimization vs Solving Equations

𝑃 min
𝑥∈ℝ𝑛

𝑓(𝑥)

• Claim (Optimality Condition for Unconstrained Optimization):
If 𝑓(𝑥) is convex and differentiable in its domain, then

𝑥∗ is optimal iff 𝛻𝑓 𝑥∗ = 0

• Conclusion:

Minimizing 𝑓 𝑥 solving 𝛻𝑓 𝑥 = 0

• As we shall see later—also for constrained optimization

About the Course
• Methods for solving convex optimization problems, based on

oracle access, with guarantees based on their properties
• And also a few more specific methods…

• Understanding different optimization methods
• Understanding their derivation
• When are they appropriate
• Guarantees (a few proofs, not a core component)

• Working and reasoning about optimization problems
• Optimality conditions
• Duality
• Standard forms: LP, QP, SDP, etc

• Prerequisites:
• Linear Algebra (vector fields, linear transformations, matrices, eigenvalues)
• Multi-dimensional Calculus (gradients, Hessians, partial derivatives,

directional derivatives)
• Some background in Algorithms (runtime analysis, proving correctness of

an algorithm), and programming

Course Structure
TAs: Blake Woodworth (head), Haoyang Liu, Greg Naitzat, Angela Wu

Contact us: convex-optimization-2018-staff@ttic.edu

Communication, homework, lecture slides, help forum via course page on canvas

If not registered, please complete webform

• Lectures Mondays and Wednesdays 12:05PM

• Recitations (choose one): Monday 4-5PM TTIC 530
OR Tuesday 4:30-5:30 Ryerson 276

• Homeworks due every Friday (50% of the grade)
Some Python programming, mostly completing provided code (can use other languages, eg MATLAB,
R, Julia, etc, if you prefer—no code or support provided)

• TA office hours: Tuesday, Wednesday, Thursday and Friday (see website)

• 7-8 homeworks (50% of grade), final (50% of grade)

• Books:
• Boyd and Vandenberghe “Convex Optimization” (about 70% of the class)
• Nocedal and Wright “Numerical Optimization”
• Nemirovski “Efficient Methods in Convex Programming”

We are looking for additional graders

Homework #1

• Available now, due next Friday 1/12, back 1/17

• Material covered: this lecture + Monday’s lecture (convexity)

• Used also to evaluate control of prerequisites and readiness to take
class

• A,B: satisfactory performance; prepared to take the class

• C: borderline; may take class but should consider difficulty
and/or preparation

• Below C: advised to not take class this quarter

• For this homework only: no collaboration on required questions
(OK to collaborate on future homework)

