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Lecture 2:
Convexity

Center of Mass Algorithm
Suggested reading: Boyd and Vandenbergh 2.1-2.3,2.5,3.1-3.2 (Convexity)
or: Bubeck 1.2-1.3 (Convexity and Sub-Gradients), 2.1 (Center of Mass)

Optional reading on Center of Mass: Nemirovskii Information Based Complexity 2.1-2.2
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Definition: A set 𝐶 ⊆ ℝ𝑛 is convex iff
∀𝑥,𝑦∈𝐶 ∀0<𝛼<1𝛼𝑥 + 1 − 𝛼 𝑦 ∈ 𝐶

• Scaling, rotation, translation of convex set are convex

• 𝐶 convex 𝐴𝐶 + 𝑏 = 𝐴𝑥 + 𝑏 𝑥 ∈ 𝐶 } convex for any 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

• Two important  convex sets: (defines by 0 ≠ 𝑎 ∈ ℝ𝑛∗, 𝑏 ∈ ℝ)

Hyperplanes: 𝑥 𝑎, 𝑥 = 𝑏 ,

Halfspaces: 𝑥 𝑎, 𝑥 ≤ 𝑏
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• If 𝐶1, 𝐶2 are convex  𝐶1 ∩ 𝐶2 convex

(𝐶1 ∪ 𝐶2 could be non-convex)

• A polyhedron is an intersection of a finite number of halfspaces



Definition: the convex hull of a set 𝑆 ⊆ ℝ𝑛 is the intersection of all convex 
sets containing it

𝑐𝑜𝑛𝑣 𝑆 =∩ 𝐶 𝑆 ⊆ 𝐶, 𝐶 convex}
and is thus the smallest convex set containing 𝑆.

Equivalently: the set of all finite convex combinations of points from 𝑆:
𝑐𝑜𝑛𝑣 𝑆 = σ𝑖=1

𝑘 𝛼𝑖 𝑥𝑖 𝑥𝑖 ∈ 𝑆, σ𝑖=1
𝑘 𝛼𝑖 = 1, 𝛼𝑖 > 0

A polytope is a convex hull of a finite number of points
𝑐𝑜𝑛𝑣 𝑥1, … , 𝑥𝑚 = σ𝑖=1

𝑚 𝛼𝑖 𝑥𝑖 σ𝑖=1
𝑚 𝛼𝑖 = 1, 𝛼𝑖 > 0



• Is every polytope a polyhedron?

• Is every polyhedron a polytope?



Theorem: Suppose 𝐶, 𝐷 ⊆ ℝ𝑛 are convex and disjoint (i.e. 𝐶 ∩ 𝐷 = ∅), then 
there exists a separating hyperplane {𝑥| 𝑎, 𝑥 = 𝑏} s.t.

𝐶 ⊆ 𝑥 𝑎, 𝑥 ≤ 𝑏 𝐷 ⊆ 𝑥 𝑎, 𝑥 ≥ 𝑏

Theorem: For every convex set 𝐶 ⊂ ℝ𝑛 and point 𝑥0 ∈ 𝜕𝐶 on its boundary, 
there exists a supporting hyperplane s.t.

𝑥0 ∈ 𝑥 𝑎, 𝑥 = 𝑏 𝐶 ⊆ {𝑥| 𝑎, 𝑥 ≤ 𝑏}

𝜕𝐶=𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝐶)−𝑖𝑛𝑡(𝐶)



Definition: A function 𝑓:ℝ𝑛 → ℝ ∪ {+∞} is convex iff
∀𝑥,𝑦∈𝑑𝑜𝑚 𝑓 ,0<𝛼<1 𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓(𝑦)

(implies that 𝛼𝑥 + 1 − 𝛼 𝑦 ∈ 𝑑𝑜𝑚 𝑓 , i.e. 𝑑𝑜𝑚(𝑓) is convex)

𝑓(𝑥)



Definition: A function 𝑓:ℝ𝑛 → ℝ ∪ {+∞} is convex iff
∀𝑥,𝑦∈𝑑𝑜𝑚 𝑓 ,0<𝛼<1 𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓(𝑦)

(implies that 𝛼𝑥 + 1 − 𝛼 𝑦 ∈ 𝑑𝑜𝑚 𝑓 , i.e. 𝑑𝑜𝑚(𝑓) is convex)

First order characterization: If 𝑓 is differentiable, it is convex iff 𝑑𝑜𝑚(𝑓) is 
convex and for all 𝑥, 𝑥0 ∈ 𝑑𝑜𝑚(𝑓):

𝑓 𝑥 ≥ 𝑓 𝑥0 + ⟨𝛻𝑓 𝑥0 , 𝑥 − 𝑥0⟩

𝑓(𝑥)

𝑓 𝑥0 + 〈∇𝑓(𝑥0), 𝑥 − 𝑥0〉

𝑥0
𝑥0



Definition: A function 𝑓:ℝ𝑛 → ℝ ∪ {+∞} is convex iff
∀𝑥,𝑦∈𝑑𝑜𝑚 𝑓 ,0<𝛼<1 𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓(𝑦)

(implies that 𝛼𝑥 + 1 − 𝛼 𝑦 ∈ 𝑑𝑜𝑚 𝑓 , i.e. 𝑑𝑜𝑚(𝑓) is convex)

First order characterization: If 𝑓 is differentiable, it is convex iff 𝑑𝑜𝑚(𝑓) is 
convex and for all 𝑥, 𝑥0 ∈ 𝑑𝑜𝑚(𝑓):

𝑓 𝑥 ≥ 𝑓 𝑥0 + ⟨𝛻𝑓 𝑥0 , 𝑥 − 𝑥0⟩

Corollary: For diff. convex 𝑓, ∇𝑓 𝑥0 = 0 𝑥0 is an optimum

𝑓(𝑥)

𝑓 𝑥0 + 〈∇𝑓(𝑥0), 𝑥 − 𝑥0〉
𝑥0



Definition: 𝑔 ∈ ℝ𝑛∗ is a subgradient of 𝑓 at 𝑥0 ∈ 𝑑𝑜𝑚 𝑓 iff
∀𝑥 𝑓 𝑥 ≥ 𝑓 𝑥0 + ⟨𝑔, 𝑥 − 𝑥0⟩

Claim: If 𝑓(𝑥) is convex and differentiable at 𝑥0 ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚 𝑓 ),
then its unique subgradient at 𝑥0 is its gradient 𝛻𝑓(𝑥0)

• At non-differentiable points, there might be multiple sub-gradients.
We denote subgradients (even if not unique) ∇𝑓(𝑥)
and the set of all subgradients 𝜕𝑓(𝑥)

𝑓(𝑥)

𝑓 𝑥0 + 〈𝑔, 𝑥 − 𝑥0〉

𝑥0

𝑓 𝑥 = ቊ
−𝑥, 𝑥 < 0

𝑥2, 𝑥 ≥ 0

𝑥 < 0
𝛻𝑓 𝑥 = −1 𝑥 > 0

𝛻𝑓 𝑥 = 2𝑥

𝛻𝑓 0 ∈ −1,0 = 𝜕𝑓(0)



Definition: 𝑔 ∈ ℝ𝑛∗ is a subgradient of 𝑓 at 𝑥0 ∈ 𝑑𝑜𝑚 𝑓 iff
∀𝑥 𝑓 𝑥 ≥ 𝑓 𝑥0 + ⟨𝑔, 𝑥 − 𝑥0⟩

Claim: If 𝑓(𝑥) is convex and differentiable at 𝑥0 ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚 𝑓 ),
then its unique subgradient at 𝑥0 is its gradient 𝛻𝑓(𝑥0)

• At non-differentiable points, there might be multiple sub-gradients.
We denote subgradients (even if not unique) ∇𝑓(𝑥)
and the set of all subgradients 𝜕𝑓(𝑥)

Claim: A function is convex if and only if it has (at least one) subgradient at 
each point



Definition: 𝑔 ∈ ℝ𝑛∗ is a subgradient of 𝑓 at 𝑥0 ∈ 𝑑𝑜𝑚 𝑓 iff
∀𝑥 𝑓 𝑥 ≥ 𝑓 𝑥0 + ⟨𝑔, 𝑥 − 𝑥0⟩

Claim: If 𝑓(𝑥) is convex and differentiable at 𝑥0 ∈ 𝑖𝑛𝑡(𝑑𝑜𝑚 𝑓 ),
then its unique subgradient at 𝑥0 is its gradient 𝛻𝑓(𝑥0)

• At non-differentiable points, there might be multiple sub-gradients.
We denote subgradients (even if not unique) ∇𝑓(𝑥)
and the set of all subgradients 𝜕𝑓(𝑥)

Claim: A function is convex if and only if it has (at least one) subgradient at 
each point

Corollary: For convex 𝑓, 𝑥0 is an optimum  0 ∈ 𝜕𝑓(𝑥0)



Definition: The epigraph of 𝑓 is 𝑒𝑝𝑖 𝑓 = 𝑥, 𝑡 𝑓 𝑥 ≤ 𝑡 ⊆ ℝ𝑛+1

Claim: 𝑓 is convex  𝑒𝑝𝑖(𝑓) is a convex set



Definition: The epigraph of 𝑓 is 𝑒𝑝𝑖 𝑓 = 𝑥, 𝑡 𝑓 𝑥 ≤ 𝑡 ⊆ ℝ𝑛+1

Claim: 𝑓 is convex  𝑒𝑝𝑖(𝑓) is a convex set

Subgradients of 𝑓 define supporting hyperplanes of 𝑒𝑝𝑖(𝑓)



Definition: The epigraph of 𝑓 is 𝑒𝑝𝑖 𝑓 = 𝑥, 𝑡 𝑓 𝑥 ≤ 𝑡 ⊆ ℝ𝑛+1

Claim: 𝑓 is convex  𝑒𝑝𝑖(𝑓) is a convex set

Subgradients of 𝑓 define supporting hyperplanes of 𝑒𝑝𝑖(𝑓)

Definition: For 𝛼 ∈ ℝ the 𝜶-sublevel set of 𝑓 is
𝑆𝛼 = 𝑥 𝑓 𝑥 ≤ 𝛼 ⊆ ℝ𝑛

Claim: 𝑓 is convex  𝑆𝛼 are convex

Subgradients of 𝒇 define supporting hyperplanes of 𝑺𝜶:
Denote 𝛼 = 𝑓(𝑥0). For 𝑥 ∈ 𝑆𝛼 we have:

𝑓 𝑥0 = 𝛼 ≥ 𝑓 𝑥 ≥ 𝑓 𝑥0 + ⟨∇𝑓 𝑥0 , 𝑥 − 𝑥0⟩

 ∇𝑓 𝑥0 , 𝑥 ≤ 𝛻𝑓 𝑥0 , 𝑥0

 𝑆𝛼 ⊆ 𝑥 𝛻𝑓 𝑥0 , 𝑥 ≤ 𝑏

If ∇𝑓 𝑥0 ≠ 0, this is a supporting hyperplane
of 𝑆𝛼

𝑏 = ⟨∇𝑓 𝑥0 , 𝑥0⟩



Cutting Plane Method

Init: 𝐺 0 = 𝐺

Iter: Pick 𝑥 𝑘 ∈ 𝐺 𝑘

𝑎 𝑘 = ∇𝑓 𝑥 𝑘 , 𝑏 𝑘 = ⟨𝑎 𝑘 , 𝑥 𝑘 ⟩

𝐺 𝑘+1 ← 𝐺 𝑘 ∩ 𝑥 𝑎 𝑘 , 𝑥 < 𝑏 𝑘

min
𝑥∈𝐺

𝑓(𝑥) 𝐺 ⊂ ℝ𝑛 known and bounded,
e.g. ball or box



Which point should we pick?

• We want to ensure that, no matter what direction the (sub)gradient is, we 
will shrink 𝐺 𝑘 significantly

Theorem (Grünbaum 1960): Let 𝐺 be a bounded convex set with center of 
mass

𝑐 =

𝐺
𝑥𝑑𝑥

𝐺 𝑑𝑥
then for any hyperplane 𝑥 𝑎, 𝑥 = 𝑎, 𝑐 passing through 𝑐 we have:

𝑣𝑜𝑙 𝐺 ∩ 𝑥 𝑎, 𝑥 ≤ 𝑎, 𝑐 ≤ 1 − ൗ1 𝑒 𝑣𝑜𝑙(𝐺)

Conclusion: if at each iteration we pick the center of mass of 𝐺 𝑘 :
𝑣𝑜𝑙 𝐺 𝑘 ≤ 0.633𝑘𝑣𝑜𝑙 𝐺

Furthermore, it is possible to show that if 𝑓 𝑥 ≤ 𝐵 then
min
𝑖=1..𝑘

𝑓 𝑥 𝑖 ≤ 𝑓 𝑥∗ + 2𝐵 ⋅ 0.633𝑘/𝑛

Intuition: need to shrink to an 𝜖-neighborhood  around 𝑥∗, i.e. until 𝑣𝑜𝑙 𝐺 𝑘 ∝ 𝜖𝑛



Claim: if we select 𝑥 𝑘 =center of mass of 𝐺 𝑘 , then min
𝑖=1..𝑘

𝑓 𝑥 𝑖 ≤ 𝑓 𝑥∗ + 2𝐵 ⋅ 0.633𝑘

Proof:

• For simplicity we assume 𝐺 is closed (otherwise, use its closure). Since 𝐺, 𝑓 are bounded, 
an optimum is attained.  Denote some such optimum 𝑥∗

• Because we only remove points with 𝑓 𝑥 ≥ 𝑓 𝑥 𝑖 , unless some 𝑥 𝑖 is optimal, we 
have 𝑥∗ ∈ 𝐺 𝑘 (if it is optimal, then 𝑓 𝑥 𝑖 = 𝑓 𝑥∗ and we are done)

• Define the 𝜖-shrinking of 𝐺 towards 𝑥∗:
𝐺𝜖 = 1 − 𝜖 𝑥∗ + 𝜖𝑥 𝑥 ∈ 𝐺

• 𝑛-dim volume shrinks as 𝜖𝑛 and so 𝑣𝑜𝑙 𝐺𝜖 = 𝜖𝑛𝑣𝑜𝑙 𝐺 .
𝑣𝑜𝑙 𝐺 𝑘 < 0.633𝑘 ⋅ 𝑣𝑜𝑙 𝐺 = 0.633𝑘𝜖−𝑛 ⋅ 𝑣𝑜𝑙(𝐺𝜖)

• Set 𝜖 = 0.633 Τ𝑘 𝑛 so that 𝑣𝑜𝑙 𝐺 𝑘 < 𝑣𝑜𝑙(𝐺𝜖), that is after 𝑘 iterations we are left with 
a set smaller then 𝐺𝜖.  This means there exists a point 𝑥𝜖 ∈ 𝐺𝜖 but 𝑥𝜖 ∉ 𝐺 𝑘 . Let 𝑗 be the 
iteration in which it was lost, i.e. s.t. 𝑥𝜖 ∈ 𝐺 𝑗 but 𝑥𝜖 ∉ 𝐺 𝑗+1 .

𝑓 𝑥 𝑗 < 𝑓 𝑥𝜖 = 𝑓 1 − 𝜖 𝑥∗ + 𝜖𝑥 ≤ 1 − 𝜖 𝑓 𝑥∗ + 𝜖𝑓 𝑥 ≤ 𝑓 𝑥∗ + 2𝜖𝐵
𝑥𝜖 was removed at iter 𝑗

def of 𝐺𝜖, for some 𝑥 ∈ 𝐺

convexity
𝑓 𝑥 − 𝑓 𝑥∗ ≤ 2𝐵

𝑥∗
𝑥𝜖

𝑥 𝑖

∇𝑓 𝑥 𝑖

𝑮 𝒌

𝑮𝝐

Details of proof not required material



Center of Mass Method
(Levin            and Newman            1965)

Init: 𝐺 0 = 𝐺

Iter: 𝑥 𝑘 ← center of mass of 𝐺 𝑘

obtain subgradient ∇𝑓 𝑥 𝑘

𝑎 𝑘 = ∇𝑓 𝑥 𝑘 , 𝑏 𝑘 = ⟨𝑎 𝑘 , 𝑥 𝑘 ⟩

𝐺 𝑘+1 ← 𝐺 𝑘 ∩ 𝑥 𝑎 𝑘 , 𝑥 < 𝑏 𝑘

Return: 𝑥 𝑘 = argmin𝑖=0..𝑘 𝑓 𝑥 𝑖

min
𝑥∈𝐺

𝑓(𝑥)

Requirements: 𝐺 ⊂ ℝ𝑛 is a known bounded convex set
evaluation and (sub)gradient access 𝑥 ↦ 𝑓 𝑥 , ∇𝑓(𝑥)

Assumption: 𝑓 is convex and bounded on 𝐺: ∀𝑥∈𝐺 𝑓 𝑥 ≤ 𝐵

Guarantee: after 𝑘 = 𝑂 𝑛 log
1

𝜖
iterations, 𝑓 𝑥 𝑘 ≤ 𝑓 𝑥∗ + 𝜖


