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Lecture 2:
Convexity
Center of Mass Algorithm

Suggested reading: Boyd and Vandenbergh 2.1-2.3,2.5,3.1-3.2 (Convexity)
or: Bubeck 1.2-1.3 (Convexity and Sub-Gradients), 2.1 (Center of Mass)
Optional reading on Center of Mass: Nemirovskii Information Based Complexity 2.1-2.2
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Definition: A set C € R" is convex iff
vx,yEC V0<a<1ax T (1 _ a)y €EC

v

e Scaling, rotation, translation of convex set are convex

e Cconvex DAC+b={Ax+ b |x € C }convex forany A € R™" h € R™

« Two important convex sets: (defines by 0 # a € R™",b € R)
Hyperplanes: {x|{a, x) = b}, \a
Halfspaces: {x|{a, x) < b}




 If Cq, C, are convex = C; N C, convex

(C; U C, could be non-convex)

* A polyhedron is an intersection of a finite number of halfspaces




Definition: the convex hull of a set S € R" is the intersection of all convex
sets containing it

conv(S) =N {C|S € C,C convex}
and is thus the smallest convex set containing S.

Equivalently: the set of all finite convex combinations of points from S:
conv(S) = {Z;‘zl a; xi|xi eES Yl a;=1,a; > O}

A polytope is a convex hull of a finite number of points
conv(xy, ..., Xm) = s ai x| it a; =1, a; >0}
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* |s every polytope a polyhedron?

* |s every polyhedron a polytope?




Theorem: Suppose C,D € R™ are convex and disjoint (i.e. C N D = @), then
there exists a separating hyperplane {x|(a, x) = b} s.t.

C € {x|{a,x) < b} D c {x|{a,x) = b}

%ure(C)—int(C) ]

Theorem: For every convex set C € R™ and point x, € dC on its boundary,
there exists a supporting hyperplane s.t.

Xo € {x|{a,x) = b} C € {x|{a,x) < b}




Definition: A function f: R™ — R U {40} is convex iff
Vx,yedom(f),0<a<1 flax+ (1 —a)y) <af(x)+ (1 —a)f(y)
(implies that ax + (1 — a)y € dom(f), i.e. dom(f) is convex)

f(x)



Definition: A function f: R™ — R U {40} is convex iff
Vx,yedom(f),0<a<1 flax+ (1 —-—a)y) <af(x)+ (1 —a)f(y)

(implies that ax + (1 — a)y € dom(f), i.e. dom(f) is convex)

First order characterization: If f is differentiable, it is convex iff dom(f) is
convex and for all x, x, € dom(f):

f(x) = f(xo) +(Vf(x0), x — xp)

f(x0) +(Vf(x0), x — xp)



Definition: A function f: R™ — R U {40} is convex iff
Vx,yedom(f),0<a<1 flax+ (1 —-—a)y) <af(x)+ (1 —a)f(y)

(implies that ax + (1 — a)y € dom(f), i.e. dom(f) is convex)

First order characterization: If f is differentiable, it is convex iff dom(f) is
convex and for all x, x, € dom(f):

f(x) = f(xo) +(Vf(x0), x — xp)

Corollary: For diff. convex f, Vf(xy,) = 0 = x, is an optimum

f(x)

X0
f(xo) +(Vf(x0), x — xp)



Definition: g € R™" is a subgradient of f at x, € dom(f) iff

Vi f(x) = fx0) + (g, x — x0)

Claim: If f(x) is convex and differentiable at x, € int(dom(f)),
then its unique subgradient at x is its gradient Vf (x,)

* At non-differentiable points, there might be multiple sub-gradients.
We denote subgradients (even if not unique) Vf (x)
and the set of all subgradients df (x)

Vf(0) € [-1,0] = 9f(0)

f(x0) + (g, x — xo)



Definition: g € R™" is a subgradient of f at x, € dom(f) iff
Vi f(x) = fx0) + (g, x — x0)

Claim: If f(x) is convex and differentiable at x, € int(dom(f)),
then its unique subgradient at x is its gradient Vf (x,)

* At non-differentiable points, there might be multiple sub-gradients.
We denote subgradients (even if not unique) Vf (x)
and the set of all subgradients df (x)

Claim: A function is convex if and only if it has (at least one) subgradient at
each point




Definition: g € R™" is a subgradient of f at x, € dom(f) iff

Vi f(x) = fx0) + (g, x — x0)
Claim: If f(x) is convex and differentiable at x, € int(dom(f)),
then its unique subgradient at x is its gradient Vf (x,)

* At non-differentiable points, there might be multiple sub-gradients.
We denote subgradients (even if not unique) Vf (x)
and the set of all subgradients df (x)

Claim: A function is convex if and only if it has (at least one) subgradient at
each point

Corollary: For convex f, xq is an optimum < 0 € df (x()




Definition: The epigraph of f is epi(f) = {(x, t)|f (x) < t} € R**!

Claim: f is convex < epi(f) is a convex set




Definition: The epigraph of f is epi(f) = {(x, t)|f (x) < t} € R**!

Claim: f is convex < epi(f) is a convex set

Subgradients of f define supporting hyperplanes of epi(f)



Definition: The epigraph of f is epi(f) = {(x, t)|f(x) < t} € R**!

Claim: f is convex < epi(f) is a convex set

Subgradients of f define supporting hyperplanes of epi(f)

Definition: For @ € R the a-sublevel set of f is
Se = x|f(x) <a} S R"

Claim: f is convex =» S, are convex

Subgradients of f define supporting hyperplanes of S, :
Denote o = f(xy). For x € S, we have:

fxo) =a=f(x) = f(xg) + (Vf(x0), x — x0)
> (Vf(x0), x) < (Vf(x0), x0)
> 5, < (l(F(x0),2) < b)

b = (Vf (o), x0) /'

of §, a

If Vf(xy) # 0, this is a supporting hyperplane



Cutting Plane Method

glelcr;li(@/— G < R™ known and bounded,
\ e.g. ball or box

GO =¢
Pick xF) € ()

ak) = Vf(x(k)),b(k) = (a0 x(K)y
GUHD G A x| (a®,x) < b® )




Which point should we pick?

* We want to ensure that, no matter what direction the (sub)gradient is, we
will shrink G significantly

Theorem (Griinbaum 1960): Let G be a bounded convex set with center of
mass

J; xdx

B J dx
then for any hyperplane {x|{a, x) = {a, ¢)} passing through ¢ we have:

vol(G N {x|{a,x) <{(a,c)}) < (1 — 1/e)vol(G)

Conclusion: if at each iteration we pick the center of mass of G .
vol(G™) < 0.633*vol(G)

Furthermore, it is possible to show that if |f(x)| < B then

min f(xW) < f(x*) + 2B - 0.633%/"
i1=1.k

Intuition: need to shrink to an e-neighborhood around x7¥, i.e. until vol(G(")) x e"

C




Claim: if we select x®=center of mass of G¥), then mllr}{ f(x(i)) < f(x*) + 2B - 0.633%
1=1..

Proof:

* For simplicity we assume G is closed (otherwise, use its closure). Since G, f are bounded,
an optimum is attained. Denote some such optimum x*

* Because we only remove points with f(x) = f(x(i)), unless some x is optimal, we
have x* € G (if it is optimal, then f(x(‘)) = f(x*) and we are done)

* Define the e-shrinking of G towards x™*:
G. ={(1—¢e)x* + ex|x € G}

* n-dim volume shrinks as €™ and so vol(G.) = €"vol(G).
vol(G™) < 0.633% - vol(G) = 0.633%¢™™ - vol(G,)

* Sete = 0.633%/™ 5o that vol(G(k)) < vol(G,), that is after k iterations we are left with
a set smaller then G.. This means there exists a point x. € G, but x. & G ") Let j be the
iteration in which it was lost, i.e. s.t. x, € GY) but x, ¢ G(“l)

(x. was removed at iter j ( convexity Lf\(x)/—f(x*) <2B |
f(x7) SO (- +ex) S ore )+ e < FG) + 26D

(def of G, for some x € G |

L/
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Details of proof not required material 7v\ffx<i>) S




Center of Mass Method

(Levinand Newman 1965)
min f(x)

XeEG

Requirements: G < R™ is a known bounded convex set
evaluation and (sub)gradient access x = f(x), Vf(x)
GO =¢
x®) « center of mass of G

obtain subgradient V£ (x(®))

a k) = Vf(x(k)),b(k) = (a0 x (k)
GO GO A [y [ (a0, %) < p® )

Return: ) = argmin;—g g f(x(i))

Assumption: f is convex and bounded on G: V,c;|f(x)| < B
Guarantee: after k = 0 (n logi) iterations, f(f(k)) < f(x*)+e



