# Convex Optimization TTIC 31070 / CMSC 35470 / BUSF 36903 / STAT 31015 

## Prof. Nati Srebro

## Lecture 2: Convexity Center of Mass Algorithm

Suggested reading: Boyd and Vandenbergh 2.1-2.3,2.5,3.1-3.2 (Convexity) or: Bubeck 1.2-1.3 (Convexity and Sub-Gradients), 2.1 (Center of Mass)

## Bisection Search



Return $x^{(5)}=0.296875$


Definition: A set $C \subseteq \mathbb{R}^{n}$ is convex iff

$$
\forall_{x, y \in C} \forall_{0<\alpha<1} \alpha x+(1-\alpha) y \in C
$$

- Scaling, rotation, translation of convex set are convex
- $C$ convex $\rightarrow A C+b=\{A x+b \mid x \in C\}$ convex for any $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- Two important convex sets: (defines by $0 \neq a \in \mathbb{R}^{n^{*}}, b \in \mathbb{R}$ )

Hyperplanes: $\{x \mid\langle a, x\rangle=b\}$,
Halfspaces: $\{x \mid\langle a, x\rangle \leq b\}$

- If $C_{1}, C_{2}$ are convex $\rightarrow C_{1} \cap C_{2}$ convex ( $C_{1} \cup C_{2}$ could be non-convex)

- A polyhedron is an intersection of a finite number of halfspaces

Definition: the convex hull of a set $S \subseteq \mathbb{R}^{n}$ is the intersection of all convex sets containing it

$$
\operatorname{conv}(S)=\cap\{C \mid S \subseteq C, C \text { convex }\}
$$

and is thus the smallest convex set containing $S$.
Equivalently: the set of all finite convex combinations of points from $S$ :

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \alpha_{i} x_{i} \mid x_{i} \in S, \sum_{i=1}^{k} \alpha_{i}=1, \alpha_{i}>0\right\}
$$



A polytope is a convex hull of a finite number of points

$$
\operatorname{conv}\left(x_{1}, \ldots, x_{m}\right)=\left\{\sum_{i=1}^{m} \alpha_{i} x_{i} \mid \sum_{i=1}^{m} \alpha_{i}=1, \alpha_{i}>0\right\}
$$



- Is every polytope a polyhedron?

- Is every polyhedron a polytope?

Theorem: Suppose $C, D \subseteq \mathbb{R}^{n}$ are convex and disjoint (i.e. $C \cap D=\emptyset$ ), then there exists a separating hyperplane $\{x \mid\langle a, x\rangle=b\}$ s.t.

$$
C \subseteq\{x \mid\langle a, x\rangle \leq b\} \quad D \subseteq\{x \mid\langle a, x\rangle \geq b\}
$$



Theorem: For every convex set $C \subset \mathbb{R}^{n}$ and point $x_{0} \in \partial C$ on its boundary, there exists a supporting hyperplane s.t.

$$
x_{0} \in\{x \mid\langle a, x\rangle=b\} \quad C \subseteq\{x \mid\langle a, x\rangle \leq b\}
$$

Definition: A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iff

$$
\forall_{x, y \in \operatorname{dom}(f), 0<\alpha<1} f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

(implies that $\alpha x+(1-\alpha) y \in \operatorname{dom}(f)$, i.e. $\operatorname{dom}(f)$ is convex)

Definition: A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iff

$$
\forall_{x, y \in \operatorname{dom}(f), 0<\alpha<1} f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

(implies that $\alpha x+(1-\alpha) y \in \operatorname{dom}(f)$, i.e. $\operatorname{dom}(f)$ is convex)

First order characterization: If $f$ is differentiable, it is convex iff $\operatorname{dom}(f)$ is convex and for all $x, x_{0} \in \operatorname{dom}(f)$ :

$$
f(x) \geq f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle
$$



Definition: A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iff

$$
\forall_{x, y \in \operatorname{dom}(f), 0<\alpha<1} f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

(implies that $\alpha x+(1-\alpha) y \in \operatorname{dom}(f)$, i.e. $\operatorname{dom}(f)$ is convex)

First order characterization: If $f$ is differentiable, it is convex iff $\operatorname{dom}(f)$ is convex and for all $x, x_{0} \in \operatorname{dom}(f)$ :

$$
f(x) \geq f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle
$$

Corollary: For diff. convex $f, \nabla f\left(x_{0}\right)=0 \rightarrow x_{0}$ is an optimum


Definition: $g \in \mathbb{R}^{n^{*}}$ is a subgradient of $f$ at $x_{0} \in \operatorname{dom}(f)$ iff

$$
\forall_{x} f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

Claim: If $f(x)$ is convex and differentiable at $x_{0} \in \operatorname{int}(\operatorname{dom}(f))$, then its unique subgradient at $x_{0}$ is its gradient $\nabla f\left(x_{0}\right)$

- At non-differentiable points, there might be multiple sub-gradients. We denote subgradients (even if not unique) $\nabla f(x)$ and the set of all subgradients $\partial f(x)$


Definition: $g \in \mathbb{R}^{n^{*}}$ is a subgradient of $f$ at $x_{0} \in \operatorname{dom}(f)$ iff

$$
\forall_{x} f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

Claim: If $f(x)$ is convex and differentiable at $x_{0} \in \operatorname{int}(\operatorname{dom}(f))$, then its unique subgradient at $x_{0}$ is its gradient $\nabla f\left(x_{0}\right)$

- At non-differentiable points, there might be multiple sub-gradients. We denote subgradients (even if not unique) $\nabla f(x)$ and the set of all subgradients $\partial f(x)$

Claim: A function is convex if and only if it has (at least one) subgradient at each point


Definition: $g \in \mathbb{R}^{n^{*}}$ is a subgradient of $f$ at $x_{0} \in \operatorname{dom}(f)$ iff

$$
\forall_{x} f(x) \geq f\left(x_{0}\right)+\left\langle g, x-x_{0}\right\rangle
$$

Claim: If $f(x)$ is convex and differentiable at $x_{0} \in \operatorname{int}(\operatorname{dom}(f))$, then its unique subgradient at $x_{0}$ is its gradient $\nabla f\left(x_{0}\right)$

- At non-differentiable points, there might be multiple sub-gradients. We denote subgradients (even if not unique) $\nabla f(x)$ and the set of all subgradients $\partial f(x)$

Claim: A function is convex if and only if it has (at least one) subgradient at each point

Corollary: For convex $f, x_{0}$ is an optimum $\Leftrightarrow 0 \in \partial f\left(x_{0}\right)$

Definition: The epigraph of $f$ is epi $(f)=\{(x, t) \mid f(x) \leq t\} \subseteq \mathbb{R}^{n+1}$
Claim: $f$ is convex $\Leftrightarrow e p i(f)$ is a convex set


Definition: The epigraph of $f$ is epi $(f)=\{(x, t) \mid f(x) \leq t\} \subseteq \mathbb{R}^{n+1}$
Claim: $f$ is convex $\Leftrightarrow e p i(f)$ is a convex set
Subgradients of $f$ define supporting hyperplanes of $\operatorname{epi}(f)$


Definition: The epigraph of $f$ is epi(f)$=\{(x, t) \mid f(x) \leq t\} \subseteq \mathbb{R}^{n+1}$
Claim: $f$ is convex $\Leftrightarrow e p i(f)$ is a convex set
Subgradients of $f$ define supporting hyperplanes of epi(f)

Definition: For $\alpha \in \mathbb{R}$ the $\alpha$-sublevel set of $f$ is

$$
S_{\alpha}=\{x \mid f(x) \leq \alpha\} \subseteq \mathbb{R}^{n}
$$

Claim: $f$ is convex $\rightarrow S_{\alpha}$ are convex
Subgradients of $f$ define supporting hyperplanes of $S_{\alpha}$ : Denote $\alpha=f\left(x_{0}\right)$. For $x \in S_{\alpha}$ we have:

$$
f\left(x_{0}\right)=\alpha \geq f(x) \geq f\left(x_{0}\right)+\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle
$$

$\rightarrow\left\langle\nabla f\left(x_{0}\right), x\right\rangle \leq\left\langle\nabla f\left(x_{0}\right), x_{0}\right\rangle$
$\rightarrow S_{\alpha} \subseteq\left\{x \mid\left\langle\nabla f\left(x_{0}\right), x\right\rangle \leq b\right\}$

$$
b=\left\langle\nabla f\left(x_{0}\right), x_{0}\right\rangle
$$

If $\nabla f\left(x_{0}\right) \neq 0$, this is a supporting hyperplane of $S_{\alpha}$


## Cutting Plane Method

$\min _{x \in G} f(x)$
$G \subset \mathbb{R}^{n}$ known and bounded, e.g. ball or box


Init: $\quad G^{(0)}=G$
Iter: Pick $x^{(k)} \in G^{(k)}$

$$
\begin{aligned}
& a^{(k)}=\nabla f\left(x^{(k)}\right), b^{(k)}=\left\langle a^{(k)}, x^{(k)}\right\rangle \\
& G^{(k+1)} \leftarrow G^{(k)} \cap\left\{x \mid\left\langle a^{(k)}, x\right\rangle<b^{(k)}\right\}
\end{aligned}
$$

## Which point should we pick?

- We want to ensure that, no matter what direction the (sub)gradient is, we will shrink $G^{(k)}$ significantly

Theorem (Grünbaum 1960): Let $G$ be a bounded convex set with center of mass

$$
c=\frac{\int_{G} x d x}{\int_{G} d x}
$$

then for any hyperplane $\{x \mid\langle a, x\rangle=\langle a, c\rangle\}$ passing through $c$ we have:

$$
\operatorname{vol}(G \cap\{x \mid\langle a, x\rangle \leq\langle a, c\rangle\}) \leq(1-1 / e) \operatorname{vol}(G)
$$

Conclusion: if at each iteration we pick the center of mass of $G^{(k)}$ :

$$
\operatorname{vol}\left(G^{(k)}\right) \leq 0.633^{k} \operatorname{vol}(G)
$$

Furthermore, it is possible to show that if $|f(x)| \leq B$ then

$$
\min _{i=1 . . k} f\left(x^{(i)}\right) \leq f\left(x^{*}\right)+2 B \cdot 0.633^{k / n}
$$

Intuition: need to shrink to an $\epsilon$-neighborhood around $x^{*}$, i.e. until $\operatorname{vol}\left(G^{(k)}\right) \propto \epsilon^{n}$

Claim: if we select $x^{(k)}=$ center of mass of $G^{(k)}$, then $\min _{i=1 . . k} f\left(x^{(i)}\right) \leq f\left(x^{*}\right)+2 B \cdot 0.633^{k}$

## Proof:

- For simplicity we assume $G$ is closed (otherwise, use its closure). Since $G, f$ are bounded, an optimum is attained. Denote some such optimum $x^{*}$
- Because we only remove points with $f(x) \geq f\left(x^{(i)}\right)$, unless some $x^{(i)}$ is optimal, we have $x^{*} \in G^{(k)}$ (if it is optimal, then $f\left(x^{(i)}\right)=f\left(x^{*}\right)$ and we are done)
- Define the $\epsilon$-shrinking of $G$ towards $x^{*}$ :

$$
G_{\epsilon}=\left\{(1-\epsilon) x^{*}+\epsilon x \mid x \in G\right\}
$$

- $n$-dim volume shrinks as $\epsilon^{n}$ and so $\operatorname{vol}\left(G_{\epsilon}\right)=\epsilon^{n} \operatorname{vol}(G)$.

$$
\operatorname{vol}\left(G^{(k)}\right)<0.633^{k} \cdot \operatorname{vol}(G)=0.633^{k} \epsilon^{-n} \cdot \operatorname{vol}\left(G_{\epsilon}\right)
$$

- Set $\epsilon=0.633^{k / n}$ so that $\operatorname{vol}\left(G^{(k)}\right)<\operatorname{vol}\left(G_{\epsilon}\right)$, that is after $k$ iterations we are left with a set smaller then $G_{\epsilon}$. This means there exists a point $x_{\epsilon} \in G_{\epsilon}$ but $x_{\epsilon} \notin G^{(k)}$. Let $j$ be the iteration in which it was lost, i.e. s.t. $x_{\epsilon} \in G^{(j)}$ but $x_{\epsilon} \notin G^{(j+1)}$.
$x_{\epsilon}$ was removed at iter $j$ convexity

$$
f(x)-f\left(x^{*}\right) \leq 2 B
$$

$f\left(x^{(j)}\right)<f\left(x_{\epsilon}\right)=f\left((1-\epsilon) x^{*}+\epsilon x\right) \leq(1-\epsilon) f\left(x^{*}\right)+\epsilon f(x) \leq f\left(x^{*}\right)+2 \epsilon B$ def of $G_{\epsilon}$, for some $x \in G$


## Center of Mass Method (Levin ${ }^{2}$ and Newman 1965) $\min _{x \in G} f(x)$

Requirements: $\quad G \subset \mathbb{R}^{n}$ is a known bounded convex set evaluation and (sub)gradient access $x \mapsto f(x), \nabla f(x)$

$$
\begin{array}{ll}
\text { Init: } & G^{(0)}=G \\
\text { Iter: } & x^{(k)} \leftarrow \text { center of mass of } G^{(k)} \\
& \text { obtain subgradient } \nabla f\left(x^{(k)}\right) \\
& a^{(k)}=\nabla f\left(x^{(k)}\right), b^{(k)}=\left\langle a^{(k)}, x^{(k)}\right\rangle \\
& G^{(k+1)} \leftarrow G^{(k)} \cap\left\{x \mid\left\langle a^{(k)}, x\right\rangle<b^{(k)}\right\} \\
\text { Return: } & \tilde{x}^{(k)}=\arg \min _{i=0 . . k} f\left(x^{(i)}\right)
\end{array}
$$

Assumption: $f$ is convex and bounded on $G$ : $\forall_{x \in G}|f(x)| \leq B$ Guarantee: after $k=O\left(n \log \frac{1}{\epsilon}\right)$ iterations, $f\left(\tilde{x}^{(k)}\right) \leq f\left(x^{*}\right)+\epsilon$

