Convex Optimization TTIC 31070 / CMSC 35470 / BUSF 36903 / STAT 31015

Prof. Nati Srebro

Lecture 2: Convexity Center of Mass Algorithm

Suggested reading: Boyd and Vandenbergh 2.1-2.3,2.5,3.1-3.2 (Convexity) or: Bubeck 1.2-1.3 (Convexity and Sub-Gradients), 2.1 (Center of Mass) Optional reading on Center of Mass: Nemirovskii Information Based Complexity 2.1-2.2

Bisection Search

Return $x^{(5)} = 0.296875$

<u>Definition</u>: A set $C \subseteq \mathbb{R}^n$ is **convex** iff $\forall_{x,y\in C} \forall_{0<\alpha<1}\alpha x + (1-\alpha)y \in C$

- Scaling, rotation, translation of convex set are convex
- C convex $\Rightarrow AC + b = \{Ax + b \mid x \in C\}$ convex for any $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- Two important convex sets: (defines by $0 \neq a \in \mathbb{R}^{n^*}, b \in \mathbb{R}$) Hyperplanes: $\{x | \langle a, x \rangle = b\}$, Halfspaces: $\{x | \langle a, x \rangle \leq b\}$

If C₁, C₂ are convex → C₁ ∩ C₂ convex
 (C₁ ∪ C₂ could be non-convex)

• A **polyhedron** is an intersection of a finite number of halfspaces

<u>Definition</u>: the **convex hull** of a set $S \subseteq \mathbb{R}^n$ is the intersection of all convex sets containing it

 $conv(S) = \cap \{C \mid S \subseteq C, C \text{ convex}\}$

and is thus the smallest convex set containing S.

Equivalently: the set of all finite convex combinations of points from *S*: $conv(S) = \{\sum_{i=1}^{k} \alpha_i x_i | x_i \in S, \sum_{i=1}^{k} \alpha_i = 1, \alpha_i > 0\}$

A **polytope** is a convex hull of a finite number of points $conv(x_1, ..., x_m) = \{\sum_{i=1}^m \alpha_i x_i | \sum_{i=1}^m \alpha_i = 1, \alpha_i > 0 \}$

• Is every polytope a polyhedron?

• Is every polyhedron a polytope?

<u>Theorem</u>: Suppose $C, D \subseteq \mathbb{R}^n$ are convex and disjoint (i.e. $C \cap D = \emptyset$), then there exists a **separating hyperplane** $\{x | \langle a, x \rangle = b\}$ s.t.

<u>Definition</u>: A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is **convex** iff $\forall_{x,y \in dom(f), 0 < \alpha < 1} f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$ (implies that $\alpha x + (1 - \alpha)y \in dom(f)$, i.e. dom(f) is convex)

<u>Definition</u>: A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is **convex** iff $\forall_{x,y \in dom(f), 0 < \alpha < 1} f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$ (implies that $\alpha x + (1 - \alpha)y \in dom(f)$, i.e. dom(f) is convex)

<u>First order characterization</u>: If f is differentiable, it is convex iff dom(f) is convex and for all $x, x_0 \in dom(f)$: $f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$

<u>Definition</u>: A function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is **convex** iff $\forall_{x,y \in dom(f), 0 < \alpha < 1} f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$ (implies that $\alpha x + (1 - \alpha)y \in dom(f)$, i.e. dom(f) is convex)

First order characterization: If f is differentiable, it is convex iff dom(f) is convex and for all $x, x_0 \in dom(f)$: $f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$

<u>Corollary</u>: For diff. convex f, $\nabla f(x_0) = 0 \rightarrow x_0$ is an optimum

<u>Definition</u>: $g \in \mathbb{R}^{n^*}$ is a **subgradient** of f at $x_0 \in dom(f)$ iff $\forall_x f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

<u>Claim</u>: If f(x) is convex and differentiable at $x_0 \in int(dom(f))$, then its unique subgradient at x_0 is its gradient $\nabla f(x_0)$

 At non-differentiable points, there might be multiple sub-gradients. We denote subgradients (even if not unique) ∇f(x) and the set of all subgradients ∂f(x)

<u>Definition</u>: $g \in \mathbb{R}^{n^*}$ is a **subgradient** of f at $x_0 \in dom(f)$ iff $\forall_x f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

<u>Claim</u>: If f(x) is convex and differentiable at $x_0 \in int(dom(f))$, then its unique subgradient at x_0 is its gradient $\nabla f(x_0)$

 At non-differentiable points, there might be multiple sub-gradients. We denote subgradients (even if not unique) ∇f(x) and the set of all subgradients ∂f(x)

<u>Claim</u>: A function is convex if and only if it has (at least one) subgradient at each point

<u>Definition</u>: $g \in \mathbb{R}^{n^*}$ is a **subgradient** of f at $x_0 \in dom(f)$ iff $\forall_x f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$

<u>Claim</u>: If f(x) is convex and differentiable at $x_0 \in int(dom(f))$, then its unique subgradient at x_0 is its gradient $\nabla f(x_0)$

 At non-differentiable points, there might be multiple sub-gradients. We denote subgradients (even if not unique) ∇f(x) and the set of all subgradients ∂f(x)

<u>Claim</u>: A function is convex if and only if it has (at least one) subgradient at each point

<u>Corollary</u>: For convex f, x_0 is an optimum $\Leftrightarrow 0 \in \partial f(x_0)$

<u>Definition</u>: The epigraph of f is $epi(f) = \{(x, t) | f(x) \le t\} \subseteq \mathbb{R}^{n+1}$ Claim: f is convex $\Leftrightarrow epi(f)$ is a convex set

<u>Definition</u>: The epigraph of f is $epi(f) = \{(x, t) | f(x) \le t\} \subseteq \mathbb{R}^{n+1}$ Claim: f is convex $\Leftrightarrow epi(f)$ is a convex set Subgradients of f define supporting hyperplanes of epi(f)

Subgradients of f define supporting hyperplanes of epi(f)

<u>Definition</u>: The **epigraph** of f is $epi(f) = \{(x, t) | f(x) \le t\} \subseteq \mathbb{R}^{n+1}$ Claim: f is convex $\Leftrightarrow epi(f)$ is a convex set Subgradients of f define supporting hyperplanes of epi(f)

<u>Definition</u>: For $\alpha \in \mathbb{R}$ the α -sublevel set of f is $S_{\alpha} = \{x | f(x) \le \alpha\} \subseteq \mathbb{R}^{n}$

<u>Claim</u>: f is convex $\rightarrow S_{\alpha}$ are convex

Subgradients of f define supporting hyperplanes of S_{α} : Denote $\alpha = f(x_0)$. For $x \in S_{\alpha}$ we have: $f(x_0) = \alpha \ge f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$ $\Rightarrow \langle \nabla f(x_0), x \rangle \le \langle \nabla f(x_0), x_0 \rangle$ $\Rightarrow S_{\alpha} \subseteq \{x | \langle \nabla f(x_0), x \rangle \le b\}$ $b = \langle \nabla f(x_0), x_0 \rangle$

If $\nabla f(x_0) \neq 0$, this is a supporting hyperplane of S_{α}

Cutting Plane Method

Init:
$$G^{(0)} = G$$

Iter: Pick $x^{(k)} \in G^{(k)}$
 $a^{(k)} = \nabla f(x^{(k)}), b^{(k)} = \langle a^{(k)}, x^{(k)} \rangle$
 $G^{(k+1)} \leftarrow G^{(k)} \cap \{ x \mid \langle a^{(k)}, x \rangle < b^{(k)} \}$

Which point should we pick?

• We want to ensure that, no matter what direction the (sub)gradient is, we will shrink $G^{(k)}$ significantly

<u>Theorem (Grünbaum 1960)</u>: Let G be a bounded convex set with center of mass

$$c = \frac{\int_{G} x dx}{\int_{G} dx}$$

then for any hyperplane $\{x | \langle a, x \rangle = \langle a, c \rangle\}$ passing through c we have: $vol(G \cap \{x | \langle a, x \rangle \le \langle a, c \rangle\}) \le (1 - \frac{1}{e})vol(G)$

<u>Conclusion</u>: if at each iteration we pick the center of mass of $G^{(k)}$: $vol(G^{(k)}) \le 0.633^k vol(G)$

Furthermore, it is possible to show that if $|f(x)| \le B$ then $\min_{i=1..k} f(x^{(i)}) \le f(x^*) + 2B \cdot 0.633^{k/n}$

Intuition: need to shrink to an ϵ -neighborhood around x^* , i.e. until $vol(G^{(k)}) \propto \epsilon^n$

<u>Claim</u>: if we select $x^{(k)}$ =center of mass of $G^{(k)}$, then $\min_{i=1,k} f(x^{(i)}) \le f(x^*) + 2B \cdot 0.633^k$

Proof:

- For simplicity we assume G is closed (otherwise, use its closure). Since G, f are bounded, an optimum is attained. Denote some such optimum x*
- Because we only remove points with $f(x) \ge f(x^{(i)})$, unless some $x^{(i)}$ is optimal, we have $x^* \in G^{(k)}$ (if it is optimal, then $f(x^{(i)}) = f(x^*)$ and we are done)
- Define the ϵ -shrinking of G towards x^* : $G_{\epsilon} = \{(1 - \epsilon)x^* + \epsilon x | x \in G\}$
- *n*-dim volume shrinks as ϵ^n and so $vol(G_{\epsilon}) = \epsilon^n vol(G)$. $vol(G^{(k)}) < 0.633^k \cdot vol(G) = 0.633^k \epsilon^{-n} \cdot vol(G_{\epsilon})$
- Set $\epsilon = 0.633^{k/n}$ so that $vol(G^{(k)}) < vol(G_{\epsilon})$, that is after k iterations we are left with a set smaller then G_{ϵ} . This means there exists a point $x_{\epsilon} \in G_{\epsilon}$ but $x_{\epsilon} \notin G^{(k)}$. Let j be the iteration in which it was lost, i.e. s.t. $x_{\epsilon} \in G^{(j)}$ but $x_{\epsilon} \notin G^{(j+1)}$.

Requirements: $G \subset \mathbb{R}^n$ is a known bounded convex set evaluation and (sub)gradient access $x \mapsto f(x), \nabla f(x)$

nit:
$$G^{(0)} = G$$

Iter:
$$x^{(k)} \leftarrow \text{center of mass of } G^{(k)}$$

obtain subgradient $\nabla f(x^{(k)})$
 $a^{(k)} = \nabla f(x^{(k)}), b^{(k)} = \langle a^{(k)}, x^{(k)} \rangle$
 $G^{(k+1)} \leftarrow G^{(k)} \cap \{ x \mid \langle a^{(k)}, x \rangle < b^{(k)} \}$
Return: $\tilde{x}^{(k)} = \arg \min_{i=0..k} f(x^{(i)})$

Assumption: f is convex and bounded on $G: \forall_{x \in G} |f(x)| \le B$ Guarantee: after $k = O\left(n \log \frac{1}{\epsilon}\right)$ iterations, $f\left(\tilde{x}^{(k)}\right) \le f(x^*) + \epsilon$