Convex Optimization

Prof. Nati Srebro

Lecture 13;:
Primal-Dual Interior Point Method

Reading: Boyd and Vandenberghe Section 11.7

The Simplex Method

Reading: Nocedal and Wright Sections 13.2,13.3,13.8
Additional details: Sections 13.4—13.7



xXERM

min - fo(x) min fo(x) — - z Jog(—=£i(x))

s.t. [i(x)<0,Ax=b s.t. Ax=0b
L(x,A,v) = Le(x,v) =

fo(x) + X; Aifi(x) + (v, Ax — b) fo(x) — %Zilog(—fi(x)) + (v, Ax — b)
Newton iteration of log-barrier method: aved
1. Use (C) to eliminate ; = ——, Relaxed KT

| tfi(x) (f) fi(x)<0
substitute to get problem in x, v. () 2,>0
_1 i =

=>» (D) becomes 0 = VL (x, tfi(x),v) = V.L:(x,v) (P) Ax =b

2. Linearize (D) about x = x) + Ax

3. Solve (P)+(D) for Ax, v, take step in direction Ax
(ensuring progress, and (f)+(A) remain valid)

(D) V.L(x,A,v) =0
(C) A filx) =—1/;




xXERM

min - fo(x) min fo(x) — - z Jog(—=£i(x))
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=>» (D) becomes 0 = VL (x, tfi(x),v) = V.L:(x,v) (P) Ax =b

2. Linearize (D) about x = x) + Ax

3. Solve (P)+(D) for Ax, v, take step in direction Ax
(ensuring progress, and (f)+(A) remain valid)

(D) V.L(x,A,v) =0
(C) A filx) =—1/;

Iteration of Primal/Dual method: (work on x (¥, 1(%) 1,(K)
1. Linearize (D)+(C) about x = x) 4+ Ax and 1 = 19 4 Ax

2. Solve (P)+(D)+(C) for x = x) + Ax, 1 = 2% + AL, v = v 4 Ay
take step in direction Ax, A1, Av (ensuring (f)+(A) remain valid)




— Ay — p
HEIIiR{rlz 00 rp(x) =Ax—b €ER
X
st fi()<0  |1eRr” (0 Av) = Fllo 4 v) €RY
i=1.m —|1.£ L m
Ax =Db v e R™ rew(o ) = [Alfl(x) * t]i=1..m €R
AR G510 = [y o o] € RO
t-Relaxed KKT
fi(x) <0 1,20 Ax =b V.L(x,,v) =0 Aifilx) =—=1/;
rp(x) =0 rp(x, 4, v) =0 rey(x,4) =0

At each iteration linearize 1, about x*), 1K) and solve:
1 (U + Ax, A + A1, v 4+ AV) ~

r(x®, 20 v + Av) + er(x(k),l(k),v(k))TAx + V)lr(x(k),/l(k),v(k))TA/l =0

In matrix form:

_sz(x(k))+2/1l(k)vzfi(x(k)) (Vfi(x(k)))i AT .~ (609, 209, (00
) g7 £ (YT : (- () M == reen(x®, 28
(Ai 7fi(x) )i diag (ﬁ(x )) 0 [Av] co( o )
A 0 0 | I rp (%)




Primal-Dual Interior Point Method

Init: (9, 2(0) (0 g ¢, fl-(x(o)) <0, fo(x(o)) < 00,10 >0
Iterate:
t() =,

Solve linearized t %)-relaxed KKT:
72 f(x®) + $AV2 £ (x©) (VW) AT‘

01| = = [y (x00,200)
hv p (x(k))

Set stepsize s by backtracking linesearch on ”T't(k) ,

ensuring f;(x) < 0and 1; > 0
(x(k"'l),/l(kﬂ),v(kﬂ)) — (x(k"’l),/l(k“),v(k“)) i S(Ax, AX, Av)
Stop if....

(Agk)Vfi(x(k))T)i diag (fl-(x(k)l)) 0

A 0 0

Ax] lr 2 (x®, /1("),1/("))‘

Advantages:

 Single loop (no inner Newton, outer central path)

e x®) need not be feasible—allowed to violate Ax = b




rp(x) =Ax —b € RP

min fo()
X n
s. L. fl(x) <0 1 ERM rD(X,A,V) = VxL(x;/l,V) e R"
=1..m B )
Axlz b J e R™ re(x,4) = [Ai fi(x) + ?]i=1..m c R™
A € RPX1 r(x, ,v) = [rp s TC(t)] e RMM+D

rp(x) = 0 =» primal feasible

rp(x, 4, v) = 0 =» x minimizes L(x, 1,V)
= g(1,v) = L(x,1,v) > —oco =» dual feasible

re)(,41) =0and ALSO1p =1p = 0
D> g, v) = fox) + TAfi () + vTxsb) = fo(x) — ™/,

Both 1» = 1, = 0 even withoutr, =0

2> ghv) = folx) + XA fi(x) £o(20)

—N(x,4)

p
gAv) = folx) = 1 -

=)

Conclusion: If rp =1, = 0, 77(x, 1) ¥ =Y A, f;(x)bounds th"e suboptimality



Primal-Dual Interior Point Method

Init:  x(9), 1(0) (0 g ¢, fl-(x(o)) <0, fo(x(o)) < 00,10 >0
Iterate:

Calculate /) = —Zi/'lgk)fi(x(k))
t(K) = #m 5 (for some parameter p > 1)

Solve linearized t ) -relaxed KKT:
P2 f(x®) + $AV2 £ (x©) (VW) AT‘

(lgk)Vfi(x(k))T)i diag (fi(x(k)l)) 0

" ra (29, 209, ()
A /'1] = [ty (2, 2)
A 0 0

A 1 (x®)
Set stepsize s by backtracking linesearch on ”T't(k) ,

ensuring f;(x) < 0and 1; > 0
(x(k“),/l(k“),v(k“)) — (x(k+1),/1(k+1),v(k+1)) + S(Ax, AN, Av)

Stop if ||7p]| < €feas, Irpll < €feas, and 7 <€

 Single loop (no inner Newton, outer central path)

« x(¥) need not be feasible—allowed to violate Ax = b
(can use this to rewrite problem so that original f;(x) < 0 violated)




Avoiding Phase | with the
Primal Dual Interior Point Method

 The P/D method allows us to start at Ax(0) = b, but we still need
fi(x@) < 0and fo(x'?) <

e o)
min  fo(x) f
XERT .t. : <
s.t. fi(x) <0 > ° Zlagi)b >
Ax =0Db s =0

Initialize to any x € dom(fy, f1, .-, fim)
Set s = max f;(x) + 1
l



Avoiding Phase | with the
Primal Dual Interior Point Method

 The P/D method allows us to start at Ax(0) = b, but we still need
fi(x@) < 0and fo(x'?) <

g Jo(X)
min  fo(x) *iER™
XER™ S.t. (x;)) <s
s.t. fi(x) <0 > Z‘i;)b
Ax =0Db _
s=0
x;=x Vi=1..m

Initialize to any x € dom(f,), x; € dom(f;)
Sets = max f;(x;) +1
l



Ellipsoid

General IP

Ellipsoid is
Method Poly time
for LP
IP for LP
|
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The Simplex Methoad




min c¢'x
XERN
s.t. Ax <b

* For alinear program: optimum always obtained on a vertex




For a linear program: optimum always obtained on a vertex

What’s a vertex?

For any feasible X consider set of active constraints: S = {i|{a;, X) = b;}

min c¢'x
XERN
s.t. Ax <b

rank(A;) = n = X is a vertex

Vertex defined uniquely by S as solution to Agx = bg
As € R™™ full rank (n linearly independent constraints tight)

=» we say X is a non-degenerate simplex

> % = Ag'bg
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min c¢'x
XERN
s.t. Ax <b

For a linear program: optimum always obtained on a vertex

What’s a vertex?

For any feasible X consider set of active constraints: S = {i|{a;, X) = b;}

rank(A;) = n = X is a vertex

Vertex defined uniquely by S as solution to Agx = bg

As € R™™ full rank (n linearly independent constraints tight)
=» we say X is a non-degenerate simplex
9 f — Aglbs

We will mostly assume today A4 is in general position (i.e. any n rows of A
are linearly independent)

=>» all vertices are non-degenerate



min c¢'x
XERN
s.t. Ax<b

Can limit our attention to vertices
Could be exponentially many! (e.g. {x|—-1 < x; < 1})
If a vertex is not optimal, there is an edge from it to a better vertex

Simplex Method:
 Start from some feasible vertex
* Walk along edges of polytope, improving objective
* End up in optimal vertex




* Maintain set S of active constraints, and current vertex x = Ag'bg

At each iteration, remove one constraint ¢ € S and replace with
another (move to a neighboring vertex by replacing one constraint in S)

xt =x+tAx where AsAx = —e, (i.e. Ax = —A5'e,)
(i.e. agAx = —1 while Ag\qAx = 0)

This ensures:
A5x+ — As(x + tAX) = bS — teq < bS

On other vertices:

Asx™ = Asx + tAsAx < bg

< bg mll enough t ]

-
b; —a; x

t = min =
is.t.aiTAx>O al- Ax

Add g7 = arg max

Which g do we remove? Do we always improve? X (agx) = b, -



min c¢'x
XERM
s.t. Ax<b

KKT:
Ax<b 120

Construct A:

L(x,2) =c"x+ 1T(Ax — b)

0= VxL(X, /1) =C +AT/1 Ai((ai,x) — bl) =0

I
c=—AT) = —Af s — A5 /
v

ls = —(A$) e ls=0

Change in objective after removing constraint g s.t. 1, <0

cTxt —cTx =cT(x+tAx) —cTx = tcTAx = tAsAsAste, = th, <0

[ ¢’ = (—AsA9)T m—fl?eq ]

If 1, = 0 =» KKT satisfied, x optimal.

Otherwise: remove g € Ss.t. 4, <0



The Simplex Method

Init:  Feasible vertex x(®) with active set $(%
Iterate:

Calculate g = —(4J) 7 1c

If Ac = 0, then stop

q = arg ml_in A

Ax = —A5'e,

If AAx < 0, then declare unbounded (p* = —o0)
. bf—agx + ]

t = min and g = arg min

i&tafo>0 a; Ax
xHD) () 4 tAx
Sk+1) s _ £} 4+ {g+}




The Simplex Method

Init:  Feasible vertex x(®) with active set $(%
Iterate:

Calculate g = —(4J) 7 1c

If A¢ = 0, then stop

q = arg ml_in A

Ax = —A5'e,

If AAx < 0, then declare unbounded (p* = —)
. bg—a;x + ]

t = min and @7 = arg min

i&taJAx>0 a; Ax
x KD () 4 tAx
SK+D) s — g} + {g*}
e Runtime per iteration: 0(n3)
Can be reduced to 0(n?) by updating (4{)~1 directly

e Number of iterations?




Simplex Runtime

e #ltter typically “small”
 Klee and Minty 1972: Could be 2", even with O (n) constraints

* Spielman and Teng 2001 “smoothed analysis”: For any LP
problem, if we add small random perturbations to the problem,
with high probability over perturbation, O(m) steps



Simplex—Additional Issues

Efficient linear algebra of pivoting
Handling degenerate vertices

Finding initial feasible vertex
* Phase | method to find feasible point
e Can then add non-tight constraints until it’s a vertex

Other “pivoting rules” (for choosing q)



Simplex vs IP Methods

* Worst case performance can be bad
* Specific to LP, not a black-box method

* Violate A = 0 (gv complimentary slackness)
* x is always exactly feasible (not strictly feasible)
* Work on “active set” of constraints
* Example of “active set” method



Ellipsoid

General IP

Ellipsoid is
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