Convex Optimization

Prof. Nati Srebro

Lecture 14
The Ellipsoid Method

Bubeck Section 2.2
Nemirovskii “Information Based Complexity” Sections 2.3, 3.2
Optional further reading: Bubeck Section 2.3

min X
xeﬁ%" fo(x)

s.t. fi(x) <0 i=1..m

Interior Point (Log Barrier) Method:
* Access to 2" order oracle for f,, f;
x = fi(x), Vfi(x), V2 £i(x)
* If f; quadratic and f; self conc.:
* Number of Oracle Accesses: O(ymlog1/¢) each fp, f;
e Runtime: 0(vm(n® + mV?)log 1/¢)
* Inequalities strictly satisfied, converge to x* from interior
. (x(k), /1(")) satisfy KKT except complementary slackness
Simplex:
* fo, fi linear (explicit access, or equiv. 1%t order oracle)
* Runtime exponential in worst case; poly-time smoothed analysis
* Work on extreme points, converge to x™ along boundary
e (x) 2K satisfy KKT except A = 0

Ellipsoid

A Levin
D Newman Method
Center of
Mass

Simplex

! !

1939 1947 1965 1972

Center-of-Mass Method

‘ min f (x) ‘
Init convex (9 st. x* € ¢V
lterate x) = center of mass of ¢

g% = vf(x®), which implies (g, x* — x®)) < 0
G+ () A {x|(g(k),x — x(k))}

/

Center-of-Mass Method

‘ min f (x) ‘
Init convex (9 st. x* € ¢V
lterate x) = center of mass of ¢

g% = vf(x®), which implies (g, x* — x®)) < 0
G+ () A {x|(g(k),x — x(k))}

Center-of-Mass Method

‘ min f (x) ‘
Init convex (9 st. x* € ¢V
lterate x) = center of mass of ¢

g% = vf(x®), which implies (g, x* — x®)) < 0
G+ () A {x|(g(k),x — x(k))}

Center-of-Mass Method

‘ min f (x) ‘
Init convex (9 st. x* € ¢V
lterate x) = center of mass of ¢

g% = vf(x®), which implies (g, x* — x®)) < 0
G+ () A {x|(g(k),x — x(k))}

/

Center-of-Mass Method

‘ min f (x) ‘
Init convex (9 st. x* € ¢V
lterate x) = center of mass of ¢

g% = vf(x®), which implies (g, x* — x®)) < 0
G+ () A {x|(g(k),x — x(k))}

/

Center-of-Mass Method

‘ min f (x) ‘
Init convex (9 st. x* € ¢V
lterate x) = center of mass of ¢

g% = vf(x®), which implies (g, x* — x®)) < 0
G+ () A {x|(g(k),x — x(k))}

/

Center-of-Mass Method

‘ min f (x) ‘
Init convex (9 st. x* € ¢V
lterate x) = center of mass of ¢

g% = vf(x®), which implies (g, x* — x®)) < 0
G+ () A {x|(g(k),x — x(k))}

Return ¥ = arg min f (x®))
1=0..

* Granbaum: for any half-plane H through center of G

1
Vol (GNH)< <1 — E) Vol (G) < 0.64Vol,(G)
> Vol,,(6™) < 0.64% Vol(G?)

) .) . n |Vol,(A)
° . C < m < + 2B
Claim: If x* € A € G, Vyee|f(x)| < B then xE(GIPA)f(x) < fx") +2 \/Voln(G)

° im: ~(k) < 1
Claim: X'/ < xe((;<o%1_lf;<k+1>)f(x)

Conclusion: If we start with G s.t. x* € G(®) and sup f(x) < B then:
x€G(0)

.mgr}cf(x(j)) < f(x*)+ 2B(0.64)k/" = k =2.2n-logB/e iterations
]1=0..

Cutting Planes with Constraints

min X
min - fo(x)

s.t. fi(x)<0 i=1..m

e If x¥) is not an optimum, we want H = {(g,x — xB)) < 0} st.x*€ H

e If x®) s feasible:

fo(x®) +(7fo(x %), 2" —x®) < fo (x7) < fo(x)
> use g = Vfy(x®)

« If x(¥) is not feasible, f;(x®) > 0 and so

fi(x®) + (Vfi(x®),x —xB) < fi(x*) < 0 < f;(x®)
> use g = Vf;(x®)

Center of Mass with Constraints

min X
xeﬁ%n fo(x)

s.t. fi(x)<0 i=1..m

Init G @

lterate x®) = center of mass of G
If 3; £;(xF)) > ¢, then g = 7f£;(x®)
Else, g = 7, (x®)
R+ GO A (x|(g), x — x0))

Return X = ar min x ()
gvif(x(k))<ef()

If x* € G, sup |f;(x)| < B fori = 0..m, then after
x€G(0)

k =22nlogB/e iterations:

fo(®) < fo(x*) + € fi®) <e

Runtime of each iteration?

From Center-of-Mass to Ellipsoid

* Instead of maintaining a polytope G 3 x*, maintain Ellipsoid
G® ={x =BWyu+x®||u]l <1} 3 x"

» At each iteration, need to find G ¥*Y) 2 ¢®) n {(g®), x — x) < 0}

GUO
g(k)

From Center-of-Mass to Ellipsoid

* Instead of maintaining a polytope G 3 x*, maintain Ellipsoid
G® ={x =BWyu+x®||u]l <1} 3 x"

» At each iteration, need to find G ¥*Y) 2 ¢®) n {(g®), x — x) < 0}

From Center-of-Mass to Ellipsoid

* Instead of maintaining a polytope G 3 x*, maintain Ellipsoid
G® ={x =BWyu+x®||u]l <1} 3 x"

» At each iteration, need to find G ¥*Y) 2 ¢®) n {(g®), x — x) < 0}

1 B(k)B(k)g(k)
el ||B<k>g<k>||

plc+1) — , n2 NG N —1 B(k)B(k)g(k)g(k) B(k)
nz-1 n2 ||B(k)g(k)||

* Claim:

» Vol(G**V) < e_2<"1-1)V0l(G("))

k1) = (R _

k
> Vol(G*HD) < e 2DV 0l(G(?), need n times as many iterations

Ellipsoid Algorithm

Init G ={x = BOu+ xO||ju| < 1}
terate 1f 3; f;(x(®) > ¢, then g® = 7f£;(x®)
Else, g = 7, (x®)

(k) g (k) 4(K)
K+ — L0 L BB g
n+1 ||B(k)g(k)||

plk+1) — n2 B(k)+ B(k)B(k)g(k)g(k) B(k)
nZz-1 n2 1 ||B(k)g(k)||

Return min x (®)
gv f(x(k))<ef()

Ifx* € G, sup |f;(x)| < B fori = 0..m, then after
x€G(0)

k = 2n°logB/e iterations:
foD = folxH+e fi(X) <e
Runtime:

0 (n4 log g) + 0 (nz log g) access to each first order oracle

Finding Violating Constraints

* To use cutting plane methods (inc. Ellipsoid), we needed at each iteration
e Decide if x is feasible
* Or, find violated constraint f;(x) > 0 (or = €)

* Straight-forward implementation:
e At each iteration, enumerate over constraints and check them

* Instead of enumerating over constraints, enough to have efficient method
(e.g. oracle) for finding violating constraint f;(x) > 0

x — “feasible” oris.t. f;(x) >0
* OK to have lots of constraints, as long as we can provide such an oracle
 Runtime doesn’t depend on #constraints

0 (n4 logg) + 0 (nz logg) oracle accesses

Example: Min Cost Arborescence

Input: directed graph G (V, E) with costs c(u — v) € R on edges,
and a root vertexr € V

Goal: find a minimum cost subset of edges, s.t. there is a path
from r to every other edge

LP relaxation (which is tight, i.e. LP has integer opt):

min Yuspcu = v)x(u - v)
x(u-v)
s.t. JuesvesX(u—->v) =1 VresScV

0<x(u-v)<1

Exponentially many constraints, but easy to check feasibility and
find violating constraint:

 Foreach v € V, find min-cut between r and v

Example: SDP

* Instead of the constraint:
X<0

use the scalar linear constraints:
v’ Xv <0 VveR"

* Infinitely many constraints, but easy to find violating constraint:
* Find largest eigenpair (v, 1)
 If A <0, return “feasible”
« If A >0, return f,(X) = v'Xv

Separation Oracles

min X
min - fo(x)

S.t. x EK

* For cutting-plane methods, enough to have:
« 1storder oracle: x = fy(x), Vfy(x)

* Separation oracle: x = “feasible” or g s.t.
K c {x'[{g,x" —x) < 0}

* E.g., forK ={X < 0O}
* X ~ negative eigenvector if one exists, or “feasible” if not

Ellipsoid Method

* Runtime:
« 0(n*log1/e)
* 0(n®log1/¢) accesses to 1t order and separation oracles

e Compare with IP methods:
. 0(ml/2 (n3 + m) log /)
. 0(ml/2 log 1/6) accesses to 2" order oracle for each fy, f1, ..., fm

* In practice: Ellipsoid really n*, whereas for IP, closer to n® with Newton,
faster with quasi-Newton

But:

 Historical significance

Ellipsoid

General IP

A Levin EIIipso.id is
D Newman Method Poly time
Center of for LP
Mass
Simplex IP for LP
l v l
1939 1947 1965 1972 1979 1984 1989

-1994

Ellipsoid Method

* Runtime:
« 0(n*log1/e)
* 0(n®log1/¢) accesses to 1t order and separation oracles

e Compare with IP methods:
. 0(ml/2 (n3 + m) log /)
. 0(ml/2 log 1/6) accesses to 2" order oracle for each fy, f1, ..., fm

* In practice: Ellipsoid really n*, whereas for IP, closer to n> with Newton,
faster with quasi-Newton

But:

* Historical significance:
 First poly-time method for LP
 First, and for a long time only, poly-time method for SDP

» Useful for combinatorial algorithm (at least in theory), since it can
handle infinitely many constraints

Cutting Plane Methods

e Reduce problem with infinitely many constraints, or
only separation oracle, to LP

Init small set of linear const L(®
(e.g. only box constraints on each variable)
lterate Solve LP: x(®) - min fo(x) s.t. L)
Query separation oracle with x
If not feasible, and oracle returns g(®,
L(k+1) (k) 1 (g("),x — x®)y < 0)

Can we do better?

Ellipsoid: 0(n?log/¢) iterations, O(n*log /<) runtime

Center of Mass: O(nlog '/c) iterations
* Exact computation (likely) requires exponential time (#P-complete)

* Using random-walk sampling to aprox center-of-mass [Bertsimas Vempala 2004]:
0(n®) per iteration = 0(n” log /<) total, but only O(nlog1/¢) oracle accesses

Faster cutting plane method?

* need to keep track of O(nlog/¢) hyperplanes, each of dim n, i.e. (.(n%) nums
» also with ellipsoids: n X n matrix representing ellipsoid has (.(n%) numbers

* seems like at least (L(n?) per iteration = Q.(n°log? 1/¢) overall

Vaidya’s cutting plane algorithm [Vaidya 1989][Lee Sidford Wang 2015]
» Keep track of polytope, adding and removing halfspaces

e Use minimum of “volumetric barrier” instead of center of mass

* O(nlog'/¢) oracle access, 0(n®log'/¢) total runtime

Can we optimize with < w(n) iterations (1% order/separation oracle accesses)?
* E.g. for IP methods, #iterations Newton independent of n

