Convex Optimization

Prof. Nati Srebro

Lecture 14: The Ellipsoid Method

Bubeck Section 2.2 Nemirovskii "Information Based Complexity" Sections 2.3, 3.2 Optional further reading: Bubeck Section 2.3

$$\min_{x \in \mathbb{R}^n} f_0(x)$$
s.t. $f_i(x) \le 0$ $i = 1..m$

Interior Point (Log Barrier) Method:

- Access to 2nd order oracle for f_0 , f_i $x \mapsto f_i(x)$, $\nabla f_i(x)$, $\nabla^2 f_i(x)$
- If f_i quadratic and f_0 self conc.:
 - Number of Oracle Accesses: $O(\sqrt{m}\log^4/\epsilon)$ each f_0 , f_i
 - Runtime: $O(\sqrt{m}(n^3 + m\nabla^2) \log^{1}/\epsilon)$
- Inequalities strictly satisfied, converge to x^* from interior
- $(x^{(k)}, \lambda^{(k)})$ satisfy KKT except complementary slackness

Simplex:

- f_0 , f_i linear (explicit access, or equiv. 1st order oracle)
- Runtime exponential in worst case; poly-time smoothed analysis
- Work on extreme points, converge to x^* along boundary
- $(x^{(k)}, \lambda^{(k)})$ satisfy KKT except $\lambda \ge 0$


```
Init convex G^{(0)} s.t. x^* \in G^{(0)}

Iterate x^{(k)} = \text{center of mass of } G^{(k)}

g^{(k)} = \nabla f_0(x^{(k)}), \text{ which implies } \langle g^{(k)}, x^* - x^{(k)} \rangle < 0

G^{(k+1)} \leftarrow G^{(k)} \cap \{x | \langle g^{(k)}, x - x^{(k)} \rangle \}
```



```
Init  \operatorname{convex} G^{(0)} \text{ s.t. } x^* \in G^{(0)}  Iterate  x^{(k)} = \operatorname{center of mass of } G^{(k)}   g^{(k)} = \nabla f_0(x^{(k)}), \text{ which implies } \langle g^{(k)}, x^* - x^{(k)} \rangle < 0   G^{(k+1)} \leftarrow G^{(k)} \cap \{x \big| \langle g^{(k)}, x - x^{(k)} \rangle \}
```



```
Init convex G^{(0)} s.t. x^* \in G^{(0)}

Iterate x^{(k)} = \text{center of mass of } G^{(k)}

g^{(k)} = \nabla f_0(x^{(k)}), \text{ which implies } \langle g^{(k)}, x^* - x^{(k)} \rangle < 0
G^{(k+1)} \leftarrow G^{(k)} \cap \{x | \langle g^{(k)}, x - x^{(k)} \rangle \}
```



```
Init convex G^{(0)} s.t. x^* \in G^{(0)}

Iterate x^{(k)} = \text{center of mass of } G^{(k)}

g^{(k)} = \nabla f_0(x^{(k)}), \text{ which implies } \langle g^{(k)}, x^* - x^{(k)} \rangle < 0

G^{(k+1)} \leftarrow G^{(k)} \cap \{x | \langle g^{(k)}, x - x^{(k)} \rangle \}
```



```
Init convex G^{(0)} s.t. x^* \in G^{(0)}
Iterate x^{(k)} = \text{center of mass of } G^{(k)}
g^{(k)} = \nabla f_0(x^{(k)}), \text{ which implies } \langle g^{(k)}, x^* - x^{(k)} \rangle < 0
G^{(k+1)} \leftarrow G^{(k)} \cap \{x | \langle g^{(k)}, x - x^{(k)} \rangle \}
```



```
Init convex G^{(0)} s.t. x^* \in G^{(0)}

Iterate x^{(k)} = \text{center of mass of } G^{(k)}

g^{(k)} = \nabla f_0(x^{(k)}), \text{ which implies } \langle g^{(k)}, x^* - x^{(k)} \rangle < 0
G^{(k+1)} \leftarrow G^{(k)} \cap \{x | \langle g^{(k)}, x - x^{(k)} \rangle \}
```


 $\min f(x)$

Init
$$convex \ G^{(0)} \ s.t. \ x^* \in G^{(0)}$$
 Iterate
$$x^{(k)} = center \ of \ mass \ of \ G^{(k)}$$

$$g^{(k)} = \nabla f_0(x^{(k)}), \ which \ implies \ \langle g^{(k)}, x^* - x^{(k)} \rangle < 0$$

$$G^{(k+1)} \leftarrow G^{(k)} \cap \{x \big| \langle g^{(k)}, x - x^{(k)} \rangle \}$$
 Return
$$\tilde{x} = \arg\min_{i=0..k} f(x^{(k)})$$

Granbaum: for any half-plane H through center of G

$$Vol_n(G \cap H) \le \left(1 - \frac{1}{e}\right) Vol_n(G) \le 0.64 Vol_n(G)$$

$$\rightarrow Vol_n(G^{(k)}) \leq 0.64^k Vol(G^{(0)})$$

- Claim: If $x^* \in A \subseteq G$, $\forall_{x \in G} |f(x)| \le B$ then $\min_{x \in (G-A)} f(x) \le f(x^*) + 2B \sqrt[n]{\frac{Vol_n(A)}{Vol_n(G)}}$
- Claim: $\tilde{x}^{(k)} \le \inf_{x \in (G^{(0)} G^{(k+1)})} f(x)$

Conclusion: If we start with $G^{(0)}$ s.t. $x^* \in G^{(0)}$ and $\sup_{x \in G^{(0)}} f(x) \le B$ then:

$$\min_{j=0..k} f(x^{(j)}) \le f(x^*) + 2B(0.64)^{k/n} \implies k = 2.2 \ n \cdot \log B/\epsilon \text{ iterations}$$

Cutting Planes with Constraints

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t.}} f_0(x)$$

$$s.t. \quad f_i(x) \le 0 \qquad i = 1..m$$

- If $x^{(k)}$ is not an optimum, we want $H = \{\langle g, x x^{(k)} \rangle < 0\}$ s.t. $x^* \in H$
- If $x^{(k)}$ is feasible: $f_0\big(x^{(k)}\big) + \langle \nabla f_0\big(x^{(k)}\big), x^* x^{(k)} \rangle \leq f_0\left(x^*\right) < f_0\big(x^{(k)}\big)$ \Rightarrow use $g = \nabla f_0\big(x^{(k)}\big)$
- If $x^{(k)}$ is not feasible, $f_i(x^{(k)}) > 0$ and so $f_i(x^{(k)}) + \langle \nabla f_i(x^{(k)}), x x^{(k)} \rangle \leq f_i(x^*) \leq 0 < f_i(x^{(k)})$ \Rightarrow use $g = \nabla f_i(x^{(k)})$

Center of Mass with Constraints

$$\min_{x \in \mathbb{R}^n} f_0(x)$$
s.t. $f_i(x) \le 0$ $i = 1..m$

Init
$$G^{(0)}$$
Iterate $x^{(k)} = \text{center of mass of } G^{(k)}$
If $\exists_i f_i(x^{(k)}) \geq \epsilon$, then $g^{(k)} = \nabla f_i(x^{(k)})$
Else, $g^{(k)} = \nabla f_0(x^{(k)})$
 $G^{(k+1)} \leftarrow G^{(k)} \cap \{x | \langle g^{(k)}, x - x^{(k)} \rangle \}$
Return $\tilde{x} = \arg\min_{\forall i f(x^{(k)}) < \epsilon} f(x^{(k)})$

If
$$x^* \in G^{(0)}$$
, $\sup_{x \in G^{(0)}} |f_i(x)| \le B$ for $i = 0..m$, then after
$$k = 2.2 \, n \log B / \epsilon \quad \text{iterations:}$$

$$f_0(\tilde{x}) \le f_0(x^*) + \epsilon \qquad f_i(\tilde{x}) < \epsilon$$

From Center-of-Mass to Ellipsoid

• Instead of maintaining a polytope $G^{(k)}\ni x^*$, maintain Ellipsoid $G^{(k)}=\left\{x=B^{(k)}u+x^{(k)}\big|\|u\|\leq 1\right\}\ni x^*$

• At each iteration, need to find $G^{(k+1)} \supseteq G^{(k)} \cap \{\langle g^{(k)}, x-x^{(k)} \rangle < 0\}$

From Center-of-Mass to Ellipsoid

• Instead of maintaining a polytope $G^{(k)}\ni x^*$, maintain Ellipsoid $G^{(k)}=\left\{x=B^{(k)}u+x^{(k)}\big|\|u\|\leq 1\right\}\ni x^*$

• At each iteration, need to find $G^{(k+1)} \supseteq G^{(k)} \cap \{\langle g^{(k)}, x-x^{(k)} \rangle < 0\}$

From Center-of-Mass to Ellipsoid

• Instead of maintaining a polytope $G^{(k)}\ni x^*$, maintain Ellipsoid $G^{(k)}=\left\{x=B^{(k)}u+x^{(k)}\big|\|u\|\leq 1\right\}\ni x^*$

• At each iteration, need to find $G^{(k+1)} \supseteq G^{(k)} \cap \{\langle g^{(k)}, x-x^{(k)} \rangle < 0\}$

$$x^{(k+1)} = x^{(k)} - \frac{1}{n+1} \frac{B^{(k)}B^{(k)}g^{(k)}}{\|B^{(k)}g^{(k)}\|}$$

$$B^{(k+1)} = \sqrt{\frac{n^2}{n^2 - 1}} B^{(k)} + \sqrt{\frac{n^2}{n^2 - 1}} \left(1 - \sqrt{\frac{n-1}{n+1}}\right) \frac{B^{(k)}B^{(k)}g^{(k)}g^{(k)}}{\|B^{(k)}g^{(k)}\|^2}$$

- Claim:
 - $G^{(k+1)} \supseteq G^{(k)} \cap \{\langle g^{(k)}, x x^{(k)} \rangle < 0\}$
 - $Vol(G^{(k+1)}) \le e^{-\frac{1}{2(n-1)}} Vol(G^{(k)})$
- $ightharpoonup Vol(G^{(k+1)}) \le e^{-\frac{k}{2(n-1)}} Vol(G^{(0)})$, need n times as many iterations

Ellipsoid Algorithm

Init
$$G^{(0)} = \left\{ x = B^{(0)}u + x^{(0)} \middle| \|u\| \le 1 \right\}$$
 Iterate
$$\text{If } \exists_i f_i(x^{(k)}) \ge \epsilon, \text{ then } g^{(k)} = \nabla f_i(x^{(k)})$$

$$\text{Else, } g^{(k)} = \nabla f_0(x^{(k)})$$

$$x^{(k+1)} = x^{(k)} - \frac{1}{n+1} \frac{B^{(k)}B^{(k)}g^{(k)}}{\|B^{(k)}g^{(k)}\|}$$

$$B^{(k+1)} = \sqrt{\frac{n^2}{n^2-1}} B^{(k)} + \sqrt{\frac{n^2}{n^2-1}} \left(1 - \sqrt{\frac{n-1}{n+1}}\right) \frac{B^{(k)}B^{(k)}g^{(k)}g^{(k)}}{\|B^{(k)}g^{(k)}\|^2}$$
 Return
$$\tilde{x} = \arg\min_{\forall i f(x^{(k)}) < \epsilon} f(x^{(k)})$$

If
$$x^* \in G^{(0)}$$
, $\sup_{x \in G^{(0)}} |f_i(x)| \le B$ for $i=0..m$, then after
$$k = 2n^2 \log B / \epsilon \quad \text{iterations:}$$

$$f_0(\tilde{x}) \le f_0(x^*) + \epsilon \quad f_i(\tilde{x}) < \epsilon$$

Runtime:

$$O\left(n^4\log\frac{B}{\epsilon}\right) + O\left(n^2\log\frac{B}{\epsilon}\right)$$
 access to each first order oracle

Finding Violating Constraints

- To use cutting plane methods (inc. Ellipsoid), we needed at each iteration
 - Decide if *x* is feasible
 - Or, find violated constraint $f_i(x) > 0$ (or $\geq \epsilon$)
- Straight-forward implementation:
 - At each iteration, enumerate over constraints and check them
- Instead of enumerating over constraints, enough to have efficient method (e.g. oracle) for finding violating constraint $f_i(x) > 0$

$$x \mapsto$$
 "feasible" or i s.t. $f_i(x) > 0$

- OK to have lots of constraints, as long as we can provide such an oracle
- Runtime doesn't depend on #constraints

$$O\left(n^4\log\frac{B}{\epsilon}\right) + O\left(n^2\log\frac{B}{\epsilon}\right)$$
 oracle accesses

Example: Min Cost Arborescence

- Input: directed graph G(V,E) with costs $c(u \to v) \in \mathbb{R}$ on edges, and a root vertex $r \in V$
- Goal: find a minimum cost subset of edges, s.t. there is a path from r to every other edge
- LP relaxation (which is tight, i.e. LP has integer opt):

$$\min_{x(u \to v)} \qquad \sum_{u \to v} c(u \to v) x(u \to v)$$
s.t.
$$\sum_{u \in S, v \notin S} x(u \to v) \ge 1 \qquad \forall r \in S \subset V$$

$$0 \le x(u \to v) \le 1$$

- Exponentially many constraints, but easy to check feasibility and find violating constraint:
 - For each $v \in V$, find min-cut between r and v

Example: SDP

Instead of the constraint:

$$X \leq 0$$

use the scalar linear constraints:

$$v^{\mathsf{T}} X v \leq 0 \quad \forall \ v \in \mathbb{R}^n$$

- Infinitely many constraints, but easy to find violating constraint:
 - Find largest eigenpair (v, λ)
 - If $\lambda \leq 0$, return "feasible"
 - If $\lambda > 0$, return $f_v(X) = v^{\mathsf{T}} X v$

Separation Oracles

$$\min_{x \in \mathbb{R}^n} f_0(x)
s.t. x \in K$$

- For cutting-plane methods, enough to have:
 - 1st order oracle: $x \mapsto f_0(x)$, $\nabla f_0(x)$
 - Separation oracle: $x \mapsto$ "feasible" or g s.t. $K \subseteq \{x' | \langle g, x' x \rangle < 0\}$
- E.g., for $K = \{X \le 0\}$:
 - $X \mapsto$ negative eigenvector if one exists, or "feasible" if not

Ellipsoid Method

- Runtime:
 - $O(n^4 \log^4/\epsilon)$
 - $O(n^2 \log^{1}/\epsilon)$ accesses to 1st order and separation oracles
- Compare with IP methods:
 - $O(m^{1/2}(n^3+m)\log^{1/\epsilon})$
 - $O(m^{1/2} \log^{1}/\epsilon)$ accesses to 2nd order oracle for each $f_0, f_1, ..., f_m$
- In practice: Ellipsoid really n^4 , whereas for IP, closer to n^3 with Newton, faster with quasi-Newton

But:

Historical significance

Ellipsoid Method

- Runtime:
 - $O(n^4 \log^{1}/\epsilon)$
 - $O(n^2 \log^{1}/\epsilon)$ accesses to 1st order and separation oracles
- Compare with IP methods:
 - $O(m^{1/2}(n^3+m)\log^{1/\epsilon})$
 - $O(m^{1/2} \log^{1}/\epsilon)$ accesses to 2nd order oracle for each $f_0, f_1, ..., f_m$
- In practice: Ellipsoid really n^4 , whereas for IP, closer to n^3 with Newton, faster with quasi-Newton

But:

- Historical significance:
 - First poly-time method for LP
 - First, and for a long time only, poly-time method for SDP
- Useful for combinatorial algorithm (at least in theory), since it can handle infinitely many constraints

Cutting Plane Methods

 Reduce problem with infinitely many constraints, or only separation oracle, to LP

```
Init small set of linear const L^{(0)} (e.g. only box constraints on each variable)

Iterate Solve LP: x^{(k)} \to \min f_0(x) s. t. L^{(k)}

Query separation oracle with x^{(k)}

If not feasible, and oracle returns g^{(k)},

L^{(k+1)} \leftarrow L^{(k)} \cup \{\langle g^{(k)}, x - x^{(k)} \rangle \leq 0\}
```

Can we do better?

- Ellipsoid: $O(n^2 \log^{1}/\epsilon)$ iterations, $O(n^4 \log^{1}/\epsilon)$ runtime
- Center of Mass: $O(n \log^{1}/\epsilon)$ iterations
 - Exact computation (likely) requires exponential time (#P-complete)
 - Using random-walk sampling to aprox center-of-mass [Bertsimas Vempala 2004]: $\tilde{O}(n^6)$ per iteration $\Rightarrow \tilde{O}(n^7 \log^{1}/\epsilon)$ total, but only $O(n \log^{1}/\epsilon)$ oracle accesses
- Faster cutting plane method?
 - need to keep track of $O(n \log^{1}/\epsilon)$ hyperplanes, each of dim n, i.e. $\Omega(n^{2})$ nums
 - also with ellipsoids: $n \times n$ matrix representing ellipsoid has $\Omega(n^2)$ numbers
 - seems like at least $\Omega(n^2)$ per iteration $\rightarrow \Omega(n^3 \log^2 1/\epsilon)$ overall
- Vaidya's cutting plane algorithm [Vaidya 1989][Lee Sidford Wang 2015]
 - Keep track of polytope, adding and removing halfspaces
 - Use minimum of "volumetric barrier" instead of center of mass
 - $\tilde{O}(n \log 1/\epsilon)$ oracle access, $\tilde{O}(n^3 \log 1/\epsilon)$ total runtime
- Can we optimize with $< \omega(n)$ iterations (1st order/separation oracle accesses)?
 - E.g. for IP methods, #iterations Newton independent of n