Convex Optimization

Prof. Nati Srebro

Lecture 15:
 Gradient Descent with Constraints

Reading: Bubeck Sections 3.1,3.3
Lower Bounds
Reading: Nemirovski "Information Based Complexity" Section 1.1
Further extended reading on n-dimensional lower bound: Section 3.1

Method	Oracle	Assumptions	\# accesses	Adtl. runtime				
Center of Mass	$1^{\text {st }} /$ separation	$\left\|f_{0}\right\|,\left\|f_{i}\right\| \leq B$	$O\left(n \log \frac{B}{\epsilon}\right)$	NA				
Ellipsoid		Find ϵ-feasible x s.t. $f_{0}(x) \leq p^{*}+\epsilon$	$O\left(n^{2} \log \frac{B}{\epsilon}\right)$	$O\left(n^{4} \log \frac{B}{\epsilon}\right)$				
Vaidya++		OR: find feasible x s.t. $f_{0}(x) \leq \inf _{f_{i}(\tilde{x})<\epsilon} f_{0}(\tilde{x})+\epsilon$	$\tilde{O}\left(n \log \frac{B}{\epsilon}\right)$	$\tilde{O}\left(n^{3} \log \frac{B}{\epsilon}\right)$ [Lee et al 2015]				
Central Path	$2^{\text {nd }}$ (and log like barrier for generalized inequalities)	f_{0} smooth, self-conc. f_{i} quadratic $\left\|f_{0}\right\|,\left\|f_{i}\right\| \leq B$, existence of ϵ-strictly feasible \tilde{x} $m\left\\|\nabla f_{i}\left(x^{(0)}\right)\right\\|\\|\tilde{x}\\| \leq B$	$\tilde{O}\left(\sqrt{m} \log \frac{B}{\epsilon}\right)$	$\tilde{O}\left(\sqrt{m} n^{3} \log \frac{B}{\epsilon}\right)$				

- Can we do better?
- Can we optimize with less than $\omega(n) 1^{\text {st }}$ order accesses?
- Without assuming smoothness and self-concordance?
- Can we perform iterations faster?

Projected Gradient Descent

$\min _{x \in \mathbb{R}^{n}}$	$f(x)$
s.t.	$x \in K$

Init	$x^{(0)} \in K$
Iterate	$x^{(k+1)} \leftarrow \Pi_{K}\left(x^{(k)}-t^{(k)} \nabla f\left(x^{(k)}\right)\right)$

- Requires access to $1^{\text {st }}$ order oracle

$$
x \rightarrow f(x), \nabla f(x)
$$

and "projection oracle" for K :

$$
\Pi_{K}(x)=\arg \min _{y \in K}\|x-y\|_{2}
$$

Projected Gradient Descent

- Requires access to $1^{\text {st }}$ order oracle

$$
x \rightarrow f(x), \nabla f(x)
$$

and "projection oracle" for K :

$$
\Pi_{K}(x)=\arg \min _{y \in K}\|x-y\|_{2}
$$

$$
\mu \preccurlyeq \nabla^{2} \leqslant M \nabla^{2} \leqslant M,\left\|x^{*}\right\| \leq R\|\nabla\| \leq L,\left\|x^{*}\right\| \leq R\|\nabla\| \leq L, \mu \preccurlyeq \nabla^{2}
$$

GD $\quad \kappa \log 1 / \epsilon$

A-GD $\sqrt{\kappa} \log 1 / \epsilon$
$M\left\|x^{*}\right\|^{2}$

Projection Oracles
 $$
\Pi_{K}(x)=\arg \min _{y \in K}\|x-y\|_{2}
$$

- $K=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{2} \leq R\right\}$

$$
\Pi_{K}(x)=\frac{x}{\max \left(\frac{\|x\|_{2}}{R}, 1\right)}
$$

$$
O(n) \text { time }
$$

- $K=\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$
\rightarrow projection onto the null-space $O(n p)$ (after pre-processing A)
- $K=\left\{x \in \mathbb{R}^{n} \mid x \geq 0\right\}$

$$
\Pi_{K}(x)=[x]_{+} \quad O(n) \text { time }
$$

- $K=\left\{X \in S^{n} \mid X \geqslant 0\right\}$
positive eigen-components $O\left(n^{3}\right)$ time
$\Pi_{K}(X)=\sum_{i}\left[\lambda_{i}\right]_{+} v_{i} v_{i}^{\top}$ where $X=\sum_{i} \lambda_{i} v_{i} v_{i}^{\top}$
- $K=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$
solve a QP (as hard as a generic QP)
- $K=K_{1} \cap K_{2}$, e.g. $K=\{x \mid A x=b, x \geq 0\}$ in this case: solve a QP

Conditional Gradient Descent (The Frank Wolfe Method)

- Gradient Descent motivated by optimizing $1^{\text {st }}$ order approximation:

$$
f(x) \approx f\left(x^{(k)}\right)+\left\langle\nabla f\left(x^{(k)}\right), x-x^{(k)}\right\rangle
$$

- Optimize only over $K: y^{(k)}=\operatorname{argmin}\left\langle\nabla f\left(x^{(k)}\right), y\right\rangle$

$$
y \in K
$$

- Then take a step toward $y^{(k)}: x^{(k+1)}=x^{(k)}+t^{(k)}\left(y^{(k)}-x^{(k)}\right)$

Init	$x^{(0)} \in K$
Iterate	$y^{(k)}=\underset{y \in K}{\operatorname{argmin}}\left\langle\nabla f\left(x^{(k)}\right), y\right\rangle$
	$x^{(k+1)} \leftarrow x^{(k)}+t^{(k)}\left(y^{(k)}-x^{(k)}\right)$

Requires $1^{\text {st }}$ order oracle for f, and linear optimization oracle for K :

$$
c \mapsto \underset{y \in K}{\operatorname{argmin}} c^{\top} y
$$

Conditional Gradient Descent

Init	$x^{(0)} \in K$
Iterate	$y^{(k)}=\underset{y \in K}{\operatorname{argmin}}\left\langle\nabla f\left(x^{(k)}\right), y\right\rangle$
	$x^{(k+1)} \leftarrow x^{(k)}+t^{(k)}\left(y^{(k)}-x^{(k)}\right)$

Requires $1^{\text {st }}$ order oracle for f, and linear optimization oracle for K :

$$
c \mapsto \underset{y \in K}{\operatorname{argmin}} c^{\top} y
$$

- $K=\{x \mid A x=b, G x \leq h\} \quad \rightarrow$ solve an LP

Reduces QP to a series of LPs

- $K=\left\{X \in S^{n} \mid 0 \leqslant X, \operatorname{tr}(X) \leq 1\right\}$
$\operatorname{argmin}\langle X, C\rangle=$ eigenvector of $-C$ with max positive eigenvalue $X \in K$

Conditional Gradient Descent

Init	$x^{(0)} \in K$
Iterate	$y^{(k)}=\underset{y \in K}{\operatorname{argmin}}\left\langle\nabla f\left(x^{(k)}\right), y\right\rangle$
	$x^{(k+1)} \leftarrow x^{(k)}+t^{(k)}\left(y^{(k)}-x^{(k)}\right)$

Requires $1^{\text {st }}$ order oracle for f, and linear optimization oracle for K :

$$
c \mapsto \underset{y \in K}{\operatorname{argmin}} c^{\top} y
$$

Assumptions: $\forall_{x \in K}\|x\| \leq K$ and $\nabla^{2} f(x) \preccurlyeq M$
Then, then with $t^{(k)}=\frac{2}{k+1}$, find ϵ-suboptimal after at most

$$
k=O\left(\frac{M R}{\epsilon}\right) \text { iterations }
$$

Is strong convexity helpful? Can we get $\log 1 / \epsilon$?
Non-smooth objectives?
Acceleration?

Method	Oracle	Assumptions	\# accesses	Adtl. runtime				
Center of Mass	$1^{\text {st }}$ +Separation	$\|f\| \leq B$	$O\left(n \log \frac{B}{\epsilon}\right)$	NA				
Ellipsoid	if needed		$O\left(n^{2} \log \frac{B}{\epsilon}\right)$	$O\left(n^{4} \log \frac{B}{\epsilon}\right)$				
Vaidya++			$\tilde{O}\left(n \log \frac{B}{\epsilon}\right)$	$\tilde{O}\left(n^{3} \log \frac{B}{\epsilon}\right)$				
Grad Descent	+Projection if needed	$\begin{gathered} \mu \preccurlyeq \nabla^{2} f \preccurlyeq M \\ \kappa=M / \mu \end{gathered}$	$O(\kappa \log B / \epsilon)$	$O(n \kappa \log B / \epsilon)$				
Accelerated GD		$\|f\| \leq B$	$O(\sqrt{\kappa} \log B / \epsilon)$	$O(n \sqrt{\kappa} \log B / \epsilon)$				
Grad Descent	+Projection or Linear Opt if needed	$\begin{aligned} & \nabla^{2} f \leqslant M \\ & \left\\|x^{*}\right\\| \leq R \end{aligned}$	$O\left(\frac{M R^{2}}{\epsilon}\right)$	$O\left(n \frac{M R^{2}}{\epsilon}\right)$				
Accelerated GD			$O\left(\sqrt{\frac{M R^{2}}{\epsilon}}\right)$	$O\left(n \sqrt{\frac{M R^{2}}{\epsilon}}\right)$				
Grad Descent	+Projection if needed	$\begin{aligned} & \\|\nabla f\\| \leq L \\ & \left\\|x^{*}\right\\| \leq R \end{aligned}$	$O\left(\frac{L^{2} R^{2}}{\epsilon^{2}}\right)$	$O\left(n \frac{L^{2} R^{2}}{\epsilon^{2}}\right)$				
???			???	???				
Newton	$2^{\text {nd }}$	Smooth self-conc	$O(B \log \log 1 / \epsilon)$	$O\left(n^{3} B \log \log 1 / \epsilon\right)$				

- Computational Lower Bounds: "any Turing machine (or computer program) that solves the problem for every input, must make at least T computational steps for some inputs"
- For any natural problem (in particular, any search problem in NP), can only get conditional lower bounds: "if (complexity assumption) then no efficient alg for $\mathrm{X}^{\prime \prime}$
- Optimization is in NP (Poly Verifiable): "Find x s.t. x is feasible and $f_{0}(x) \leq c^{\prime \prime}$
- Very difficult to obtain (even conditional) polynomial lower bounds: NP-hard \rightarrow likely no poly-time. Much harder to prove "there exists n^{3} alg but no n^{2} alg".
- What's the input to optimization?
- The objective function f ? Code for the function?

Uncomputable to even decides if it does something, let alone optimize.

- Oracle Lower Bounds:
- "Any method that solves the problem (finds an ϵ suboptimal solution) for every f satisfying our assumptions, must call the oracle provided at least T times for some inputs"
- Can we get a lower bound for a specific optimization problem, e.g. specific objective $f(\cdot)$?
- No. For any specific f, there is always a very simple algorithm: "return $x^{* "}$
- Can maybe give lower bound on \#access/runtime of a specific alg. A :

$$
T(A, f) \geq T
$$

but not lower bound for any algorithm:

$$
\min _{A} T(A, f)
$$

- Instead, need to discuss class of problems/objective:

$$
\min _{A} \max _{f \in \mathcal{F}} T(A, f)
$$

"Any algorithm must make at least T queries for some f satisfying the assumptions".

- Crucial to define class \mathcal{F} of functions we are considering, e.g.:

$$
\mathcal{F}=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid \forall_{x} \mu \leqslant \nabla^{2} f(x) \preccurlyeq M\right\}
$$

- To get such a lower bound, we need to show that for any possible method A, we can construct a "hard" $f \in \mathcal{F}$.
- How can we do this?

$$
\begin{gathered}
\text { Bear Hunt } \\
\mathcal{F}=\left\{f_{b}(x)=\left\{\left.\begin{array}{c}
0 \text { if } b=x \\
1 \text { otherwise }
\end{array} \right\rvert\, b \in \text { Bears }\right\}\right. \\
\text { Membership Oracle: } Q \subseteq \text { Bears } \rightarrow \delta_{b \in Q}
\end{gathered}
$$

Claim: for any (deterministic) algorithm A with access only to a membership oracle, there exists $f_{b} \in \mathcal{F}$ such that the algorithm must make $T \geq$ $\left\lceil\log _{2} \mid\right.$ Bears $\left.\mid\right]$ membership oracle queries before returning correct answer (0.5-suboptimal solution)

- To construct f_{b} based on A, we describe an adversary "playing" against A.
- Instead of picking bear in advance, adversary maintains set of plausible bears B consistent with all answers so far.
- For each query Q, provide answer and remove from B anything inconsistent.
- If algorithm outputs answer while $|B|>1$, pick a different $b \in B . f_{b}$ is the "hard" function for algorithm A.

Bear Hunt

- Initialize $B=$ Bears and simulate A
- On each query Q :

If $|B \cap Q|>\frac{|B|}{2}$, answer " $b \in Q$ ", $B \leftarrow B \cap Q$
otherwise, answer " $b \notin Q$ ", $B \leftarrow B \cap \bar{Q}$

- If A stops and outputs \tilde{b} while $|B|>1$, pick f_{b} s.t. $b \in B, b \neq \tilde{b}$.

Claim: after the simulation, for all $b \in B$, all answers are valid for input f_{b}
Claim: after T queries, $|B| \geq 2^{-T} \cdot \mid$ Bears \mid
\rightarrow if A makes $<\left\lceil\log _{2} \mid\right.$ Bears $\left.\mid\right\rceil$ queries, then $|B|>1$

Conclusion: If the A always makes $<\left\lceil\log _{2} \mid\right.$ Bears $\left.\mid\right\rceil$ queries, it will be wrong on f_{b}

```
min\mathbb{R}
lon
```

Assumptions: f is convex and bounded, $|f(x)| \leq 1$

- Convenience trick: consider what A returns as the final query (now we just have to show all queries are at "bad" points)
- Goal: for any A, construct f that such that it will take A many queries before it queries at an ϵ-suboptimal point.
- Initialize "unexplored segment" $B_{0}=[-1,1]$ and $f_{0}=|x|$
- Simulate the algorithm, and for each query $x^{(k)}, k=1$..T:
- Update $B_{k} \subset B_{k-1}$ such that $x^{(k)} \notin B_{k}$
- Update f_{k} by changing f_{k-1} only inside B_{k-1}

This ensures all previous answers are still valid
Also ensure: all ϵ-suboptimal points are in B_{k}

- Answer query $x^{(k)}$ with $\nabla f_{k}\left(x^{(k)}\right)$
- Initialize "unexplored segment" $\left[l_{0}, r_{0}\right]=[-1,1]$ and $f_{0}=|x|$

$$
\text { We will always have } f_{k}(x)=2^{-3 k}\left|x-\frac{l_{k}+r_{k}}{2}\right|+a_{k} \text { inside }\left[l_{k}, r_{k}\right]
$$

- Simulate the algorithm, and for each query $x^{(k)}$:
- Set $\left[l_{k}, r_{k}\right] \leftarrow\left[l_{k-1}+\frac{1}{14}\left(r_{k-1}-l_{k-1}\right), l_{k-1}+\frac{6}{14}\left(r_{k-1}-l_{k-1}\right)\right]$ $\operatorname{or}\left[l_{k}, r_{k}\right] \leftarrow\left[l_{k-1}+\frac{8}{14}\left(r_{k-1}-l_{k-1}\right), l_{k-1}+\frac{13}{14}\left(r_{k-1}-l_{k-1}\right)\right]$ s.t. $x^{(k)} \notin\left[l_{k+1}, r_{k+1}\right]$
- Set $f_{k}(x)=f_{k-1}(x)$ for $x \notin\left[l_{k-1}, r_{k-1}\right]$ and as follows inside $\left[l_{k-1}, r_{k-1}\right]$:
- Answer according to f_{k}

- Claim: f_{k} is convex, $\left|f_{k}(x)\right| \leq 1$, and answer $1 . . k$ are consistent with f_{k}
- Claim: $\forall x \notin\left[l_{k}, r_{k}\right], f_{k}(x) \geq f_{k}\left(x_{k}^{*}\right)+2^{-3 k}\left(\frac{5}{14}\right)^{k}>f_{k}\left(x_{k}^{*}\right)+2^{-5 k}$

```
mi\in\mathbb{R}
s.t. }\quad-R\leqx\leq
```

Conclusion: for any algorithm A that uses a $1^{\text {st }}$ order oracle and any ϵ, there exists a convex $f:[-1,1] \rightarrow \mathbb{R},|f(x)| \leq 1$, such that on input f, A calls the oracle at least $\frac{1}{5} \log _{2} \frac{1}{\epsilon}-1$ times before returning an ϵ suboptimal point.

By scaling $\tilde{f}(x)=B \cdot f(x / R)$:
for any algorithm A that uses a $1^{\text {st }}$ order oracle and any B, R, ϵ, there exists a convex $f:[-R, R] \rightarrow \mathbb{R},|f(x)| \leq B$, such that on input f, A calls the oracle at least $\frac{1}{5} \log _{2} \frac{B}{\epsilon}-1$ times before returning an ϵ-suboptimal point.

Would $2^{\text {nd }}$ order oracle help?
Lower bound holds for $2^{\text {nd }}$, even $3^{\text {rd }}$, or any "local" oracle.

