Convex Optimization

Prof. Nati Srebro

Lecture 15:

Gradient Descent with Constraints

Reading: Bubeck Sections 3.1,3.3

Lower Bounds

Reading: Nemirovski "Information Based Complexity" Section 1.1 Further extended reading on n-dimensional lower bound: Section 3.1

Method	Oracle	Assumptions	# accesses	Adtl. runtime
Center of Mass	1 st / separation	$ f_0 , f_i \le B$	$O\left(n\log\frac{B}{\epsilon}\right)$	NA
Ellipsoid		Find ϵ -feasible x s.t. $f_0(x) \le p^* + \epsilon$	$O\left(n^2\log\frac{B}{\epsilon}\right)$	$O\left(n^4\lograc{B}{\epsilon} ight)$
Vaidya++		OR: find feasible x s.t. $f_0(x) \leq \inf_{f_i(\tilde{x}) < \epsilon} f_0(\tilde{x}) + \epsilon$	$\tilde{O}\left(n\log\frac{B}{\epsilon}\right)$	$ ilde{O}\left(n^3\lograc{B}{\epsilon} ight)$ [Lee et al 2015]
Central Path	2 nd (and log like barrier for generalized inequalities)	$\begin{split} f_0 \text{ smooth, self-conc.} \\ f_i \text{ quadratic} \\ f_0 , f_i \leq B, \\ \text{existence of } \epsilon \text{-strictly feasible } \tilde{x} \\ & m \ \nabla f_i(x^{(0)}) \ \ \tilde{x} \ \leq B \end{split}$	$\tilde{O}\left(\sqrt{m}\log\frac{B}{\epsilon}\right)$	$\tilde{O}\left(\sqrt{m}n^3\log\frac{B}{\epsilon}\right)$

- Can we do better?
- Can we optimize with less than $\omega(n)$ 1st order accesses?
- Without assuming smoothness and self-concordance?
- Can we perform iterations faster?

Method	Oracle	Assumptions	# accesses	Adtl. runtime
Center of Mass	1 st	$ f \le B$	$O\left(n\log\frac{B}{\epsilon}\right)$	NA
Ellipsoid			$O\left(n^2\log\frac{B}{\epsilon}\right)$	$O\left(n^4\lograc{B}{\epsilon} ight)$
Vaidya++			$\tilde{O}\left(n\lograc{B}{\epsilon} ight)$	$ ilde{O}\left(n^3\lograc{B}{\epsilon} ight)$
Grad Descent		$\mu \preccurlyeq \nabla^2 f \preccurlyeq M$	$O(\kappa \log B/\epsilon)$	$O(n\kappa \log^B/\epsilon)$
Accelerated GD		$\kappa = M/\mu$ $ f \le B$	$O(\sqrt{\kappa}\log B/\epsilon)$	$O(n\sqrt{\kappa}\log B/\epsilon)$
Grad Descent		$\nabla^2 f \preccurlyeq M \\ \ x^*\ \le R$	$O\left(\frac{MR^2}{\epsilon}\right)$	$O\left(n\frac{MR^2}{\epsilon}\right)$
Accelerated GD			$O\left(\sqrt{\frac{MR^2}{\epsilon}}\right)$	$O\left(n\sqrt{\frac{MR^2}{\epsilon}}\right)$
Grad Descent		$\ \nabla f\ \le L$ $\ x^*\ \le R$	$O\left(\frac{L^2R^2}{\epsilon^2}\right)$	$O\left(n\frac{L^2R^2}{\epsilon^2}\right)$
???			???	???
Newton	2 nd	Smooth self-conc	$O(B \log \log 1/\epsilon)$	$O(n^3 B \log \log 1/\epsilon)$

Projected Gradient Descent

$$\begin{array}{ll} \min_{\substack{x \in \mathbb{R}^n \\ s. t. \\ s. t. \\ x \in K}} f(x) \\ \text{Init} & x^{(0)} \in K \\ \text{Iterate} & x^{(k+1)} \leftarrow \Pi_K \left(x^{(k)} - t^{(k)} \nabla f(x^{(k)}) \right) \end{array}$$

• Requires access to 1st order oracle $x \to f(x), \nabla f(x)$ and "projection oracle" for K: $\Pi_K(x) = \arg\min_{y \in K} ||x - y||_2$

Projected Gradient Descent

• Requires access to 1st order oracle $x \to f(x), \nabla f(x)$ and "projection oracle" for K: $\Pi_K(x) = \arg\min_{y \in K} ||x - y||_2$

	$\mu \preccurlyeq \nabla^2 \preccurlyeq M$	$\nabla^2 \preccurlyeq M, x^* \le R$	$\ \nabla\ \le L, \ x^*\ \le R$	$\ \nabla\ \leq L, \mu \preccurlyeq \nabla^2$
GD	$\kappa \log 1/\epsilon$	$\frac{M\ x^*\ ^2}{\epsilon}$	$\frac{L^2 \ x^*\ ^2}{\epsilon^2}$	$\frac{L^2}{\mu\epsilon}$
A-GD	$\sqrt{\kappa} \log 1/\epsilon$	$\sqrt{\frac{M\ x^*\ ^2}{\epsilon}}$		

Projection Oracles $\Pi_{K}(x) = \arg \min_{y \in K} ||x - y||_{2}$

• $K = \{x \in \mathbb{R}^n | \|x\|_2 \le R\}$ $\Pi_K(x) = \frac{x}{\max(\frac{\|x\|_2}{R}, 1)}$

O(n) time

• $K = \{x \in \mathbb{R}^n | Ax = b\}$

 \rightarrow projection onto the null-space O(np) (after pre-processing A)

•
$$K = \{x \in \mathbb{R}^n | x \ge 0\}$$

 $\Pi_K(x) = [x]_+ \qquad \qquad O(n) \text{ time}$

• $K = \{X \in S^n | X \ge 0\}$

positive eigen-components $O(n^3)$ time $\Pi_K(X) = \sum_i [\lambda_i]_+ v_i v_i^\top$ where $X = \sum_i \lambda_i v_i v_i^\top$

• $K = \{x \in \mathbb{R}^n | Ax \le b\}$

solve a QP (as hard as a generic QP)

• $K = K_1 \cap K_2$, e.g. $K = \{x | Ax = b, x \ge 0\}$ in this case: solve a QP

Conditional Gradient Descent (The Frank Wolfe Method)

- Gradient Descent motivated by optimizing 1st order approximation: $f(x) \approx f(x^{(k)}) + \langle \nabla f(x^{(k)}), x - x^{(k)} \rangle$
- Optimize only over $K: y^{(k)} = \underset{v \in K}{\operatorname{argmin}} \langle \nabla f(x^{(k)}), y \rangle$
- Then take a step toward $y^{(k)}: x^{(k+1)} = x^{(k)} + t^{(k)} (y^{(k)} x^{(k)})$

Conditional Gradient Descent

Init
$$x^{(0)} \in K$$

Iterate $y^{(k)} = \underset{\substack{y \in K \\ y \in K}}{\operatorname{argmin}} \langle \nabla f(x^{(k)}), y \rangle$
 $x^{(k+1)} \leftarrow x^{(k)} + t^{(k)} (y^{(k)} - x^{(k)})$

Requires 1st order oracle for f, and linear optimization oracle for K: $c \mapsto \underset{y \in K}{\operatorname{argmin}} c^{\top} y$

•
$$K = \{x | Ax = b, Gx \le h\}$$
 \rightarrow solve an LP

Reduces QP to a series of LPs

•
$$K = \{X \in S^n | 0 \leq X, tr(X) \le 1\}$$

 $\operatorname{argmin}_{X \in K} \langle X, C \rangle = \operatorname{eigenvector} \operatorname{of} -C$ with max positive eigenvalue

Conditional Gradient Descent

Init
$$x^{(0)} \in K$$

Iterate $y^{(k)} = \underset{\substack{y \in K \\ y \in K}}{\operatorname{argmin}} \langle \nabla f(x^{(k)}), y \rangle$
 $x^{(k+1)} \leftarrow x^{(k)} + t^{(k)}(y^{(k)} - x^{(k)})$

Requires 1st order oracle for f, and linear optimization oracle for K: $c \mapsto \underset{y \in K}{\operatorname{argmin}} c^{\top} y$

<u>Assumptions</u>: $\forall_{x \in K} ||x|| \le K$ and $\nabla^2 f(x) \le M$

Then, then with $t^{(k)} = \frac{2}{k+1}$, find ϵ -suboptimal after at most $k = O\left(\frac{MR}{\epsilon}\right)$ iterations

Is strong convexity helpful? Can we get $\log 1/\epsilon$?

Non-smooth objectives?

Acceleration?

Method	Oracle	Assumptions	# accesses	Adtl. runtime
Center of Mass	1 st +Separation if needed	$ f \leq B$	$O\left(n\log\frac{B}{\epsilon}\right)$	NA
Ellipsoid			$O\left(n^2\log\frac{B}{\epsilon}\right)$	$O\left(n^4\lograc{B}{\epsilon} ight)$
Vaidya++			$ ilde{O}\left(n\lograc{B}{\epsilon} ight)$	$ ilde{O}\left(n^3\lograc{B}{\epsilon} ight)$
Grad Descent	+Projection if needed	$ \mu \leq \nabla^2 f \leq M \\ \kappa = M/\mu $	$O(\kappa \log B/\epsilon)$	$O(n\kappa \log B/\epsilon)$
Accelerated GD		$ f \le B$	$O(\sqrt{\kappa}\log^B/\epsilon)$	$O(n\sqrt{\kappa}\log B/\epsilon)$
Grad Descent	+Projection or Linear Opt if needed	$\nabla^2 f \preccurlyeq M \\ \ x^*\ \le R$	$O\left(\frac{MR^2}{\epsilon}\right)$	$O\left(n\frac{MR^2}{\epsilon}\right)$
Accelerated GD			$O\left(\sqrt{\frac{MR^2}{\epsilon}}\right)$	$O\left(n\sqrt{\frac{MR^2}{\epsilon}}\right)$
Grad Descent	+Projection if needed	$\ \nabla f\ \le L$ $\ x^*\ \le R$	$O\left(\frac{L^2R^2}{\epsilon^2}\right)$	$O\left(n\frac{L^2R^2}{\epsilon^2}\right)$
???			???	???
Newton	2 nd	Smooth self-conc	$O(B \log \log 1/\epsilon)$	$O(n^3 B \log \log 1/\epsilon)$

- Computational Lower Bounds: "any Turing machine (or computer program) that solves the problem for every input, must make at least T computational steps for some inputs"
 - For any natural problem (in particular, any search problem in NP), can only get conditional lower bounds: "if (complexity assumption) then no efficient alg for X"
 - Optimization is in NP (Poly Verifiable): "Find x s.t. x is feasible and $f_0(x) \le c$ "
 - Very difficult to obtain (even conditional) polynomial lower bounds: NP-hard → likely no poly-time. Much harder to prove "there exists n³ alg but no n² alg".
- What's the input to optimization?
 - The objective function *f*? Code for the function? Uncomputable to even decides if it does something, let alone optimize.
- Oracle Lower Bounds:
 - "Any method that solves the problem (finds an
 e suboptimal solution) for every *f* satisfying our assumptions, must call the oracle provided at least T times for some inputs"

- Can we get a lower bound for a specific optimization problem, e.g. specific objective $f(\cdot)$?
- No. For any specific f, there is always a very simple algorithm: "return x^* "
- Can maybe give lower bound on #access/runtime of a specific alg. A: $T(A, f) \ge T$ but not lower bound for any algorithm: $\min_{A} T(A, f)$
- Instead, need to discuss class of problems/objective: $\min_{A} \max_{f \in \mathcal{F}} T(A, f)$

"Any algorithm must make at least T queries for some f satisfying the assumptions".

- Crucial to define class \mathcal{F} of functions we are considering, e.g.: $\mathcal{F} = \{f : \mathbb{R}^n \to \mathbb{R} | \forall_x \mu \leq \nabla^2 f(x) \leq M\}$
- To get such a lower bound, we need to show that for any possible method A, we can construct a "hard" $f \in \mathcal{F}$.
- How can we do this?

Bear Hunt

$$\mathcal{F} = \left\{ f_b(x) = \left\{ \begin{array}{c} 0 \ if \ b = x \\ 1 \ otherwise \end{array} \right| \ b \in Bears \right\}$$

Membership Oracle: $Q \subseteq Bears \rightarrow \delta_{b \in Q}$

<u>Claim</u>: for any (deterministic) algorithm A with access only to a membership oracle, there exists $f_b \in \mathcal{F}$ such that the algorithm must make $T \ge \lceil \log_2 |Bears| \rceil$ membership oracle queries before returning correct answer (0.5-suboptimal solution)

- To construct f_b based on A, we describe an adversary "playing" against A.
- Instead of picking bear in advance, adversary maintains set of plausible bears *B* consistent with all answers so far.
- For each query Q, provide answer and remove from B anything inconsistent.
- If algorithm outputs answer while |B| > 1, pick a different $b \in B$. f_b is the "hard" function for algorithm A.

Bear Hunt

- Initialize B = Bears and simulate A
- On each query *Q*:

If $|B \cap Q| > \frac{|B|}{2}$, answer " $b \in Q$ ", $B \leftarrow B \cap Q$ otherwise, answer " $b \notin Q$ ", $B \leftarrow B \cap \overline{Q}$

• If A stops and outputs \tilde{b} while |B| > 1, pick f_b s.t. $b \in B$, $b \neq \tilde{b}$.

<u>Claim</u>: after the simulation, for all $b \in B$, all answers are valid for input f_b <u>Claim</u>: after T queries, $|B| \ge 2^{-T} \cdot |Bears|$

→ if A makes < $\lceil \log_2 |Bears| \rceil$ queries, then |B| > 1

<u>Conclusion</u>: If the A always makes $< [log_2 |Bears|]$ queries, it will be wrong on f_b

$$\min_{\substack{x \in \mathbb{R} \\ s. t.}} f(x) \\ -1 \le x \le 1$$

Assumptions: f is convex and bounded, $|f(x)| \le 1$

- Convenience trick: consider what A returns as the final query (now we just have to show all queries are at "bad" points)
- Goal: for any A, construct f that such that it will take A many queries before it queries at an ε-suboptimal point.
- Initialize "unexplored segment" $B_0 = [-1,1]$ and $f_0 = |x|$
- Simulate the algorithm, and for each query $x^{(k)}$, k = 1..T:
 - Update $B_k \subset B_{k-1}$ such that $x^{(k)} \notin B_k$
 - Update f_k by changing f_{k-1} only inside B_{k-1}

This ensures all previous answers are still valid

Also ensure: all ϵ -suboptimal points are in B_k

• Answer query $x^{(k)}$ with $\nabla f_k(x^{(k)})$

• Initialize "unexplored segment" $[l_0, r_0] = [-1, 1]$ and $f_0 = |x|$

We will always have $f_k(x) = 2^{-3k} \left| x - \frac{l_k + r_k}{2} \right| + a_k$ inside $[l_k, r_k]$

- Simulate the algorithm, and for each query $x^{(k)}$:
 - Set $[l_k, r_k] \leftarrow \left[l_{k-1} + \frac{1}{14} (r_{k-1} l_{k-1}), l_{k-1} + \frac{6}{14} (r_{k-1} l_{k-1}) \right]$ or $[l_k, r_k] \leftarrow \left[l_{k-1} + \frac{8}{14} (r_{k-1} - l_{k-1}), l_{k-1} + \frac{13}{14} (r_{k-1} - l_{k-1}) \right]$ s.t. $x^{(k)} \notin [l_{k+1}, r_{k+1}]$
 - Set $f_k(x) = f_{k-1}(x)$ for $x \notin [l_{k-1}, r_{k-1}]$ and as follows inside $[l_{k-1}, r_{k-1}]$:
 - Answer according to f_k

- <u>Claim</u>: f_k is convex, $|f_k(x)| \le 1$, and answer 1... k are consistent with f_k
- <u>Claim</u>: $\forall x \notin [l_k, r_k], f_k(x) \ge f_k(x_k^*) + 2^{-3k} \left(\frac{5}{14}\right)^k > f_k(x_k^*) + 2^{-5k}$

$$\min_{\substack{\boldsymbol{x} \in \mathbb{R} \\ s. t.}} f(\boldsymbol{x}) \\ -R \le x \le R$$

Conclusion: for any algorithm A that uses a 1st order oracle and any ϵ , there exists a convex $f: [-1,1] \to \mathbb{R}$, $|f(x)| \le 1$, such that on input f, A calls the oracle at least $\frac{1}{5}\log_2\frac{1}{\epsilon} - 1$ times before returning an ϵ suboptimal point.

By scaling $\tilde{f}(x) = B \cdot f(x/R)$:

for any algorithm A that uses a 1st order oracle and any B, R, ϵ , there exists a convex $f: [-R, R] \to \mathbb{R}, |f(x)| \le B$, such that on input f, A calls the oracle at least $\frac{1}{5}\log_2\frac{B}{\epsilon} - 1$ times before returning an ϵ -suboptimal point.

Would 2nd order oracle help?

Lower bound holds for 2nd, even 3rd, or any "local" oracle.