
Convex Optimization
Prof. Nati Srebro

Lecture 15:
Gradient Descent with Constraints

Reading: Bubeck Sections 3.1,3.3

Lower Bounds
Reading: Nemirovski “Information Based Complexity” Section 1.1

Further extended reading on 𝑛-dimensional lower bound: Section 3.1



Method Oracle Assumptions # accesses Adtl. runtime

Center 
of Mass

1st / 
separation

|𝑓0|, 𝑓𝑖 ≤ 𝐵

Find 𝜖-feasible 𝑥 s.t.
𝑓0 𝑥 ≤ 𝑝∗ + 𝜖

OR: find feasible 𝑥 s.t.
𝑓0 𝑥 ≤ inf

𝑓𝑖 𝑥 <𝜖
𝑓0 𝑥 + 𝜖

𝑂 𝑛 log
𝐵

𝜖

NA

Ellipsoid
𝑂 𝑛2 log

𝐵

𝜖
𝑂 𝑛4 log

𝐵

𝜖

Vaidya++ ෨𝑂 𝑛 log
𝐵

𝜖
෨𝑂 𝑛3 log

𝐵

𝜖
[Lee et al 2015]

Central 
Path

2nd

(and log like 
barrier for 
generalized 
inequalities)

𝑓0 smooth, self-conc.
𝑓𝑖 quadratic

𝑓0 , 𝑓𝑖 ≤ 𝐵,
existence of 𝜖-strictly feasible 𝑥

𝑚 𝛻𝑓𝑖 𝑥
0 𝑥 ≤ 𝐵

෨𝑂 𝑚 log
𝐵

𝜖
෨𝑂 𝑚𝑛3 log

𝐵

𝜖

• Can we do better?
• Can we optimize with less than 𝜔(𝑛) 1st order accesses?
• Without assuming smoothness and self-concordance?
• Can we perform iterations faster?



Method Oracle Assumptions # accesses Adtl. runtime

Center of Mass 1st |𝑓| ≤ 𝐵
𝑂 𝑛 log

𝐵

𝜖

NA

Ellipsoid
𝑂 𝑛2 log

𝐵

𝜖
𝑂 𝑛4 log

𝐵

𝜖

Vaidya++ ෨𝑂 𝑛 log
𝐵

𝜖
෨𝑂 𝑛3 log

𝐵

𝜖

Grad Descent 𝜇 ≼ 𝛻2𝑓 ≼ 𝑀
𝜅 = 𝑀/𝜇
𝑓 ≤ 𝐵

𝑂(𝜅 log ൗ𝐵 𝜖 ) 𝑂(𝑛𝜅 log ൗ𝐵 𝜖 )

Accelerated GD 𝑂( 𝜅 log ൗ𝐵 𝜖 ) 𝑂(𝑛 𝜅 log ൗ𝐵 𝜖 )

Grad Descent 𝛻2𝑓 ≼ 𝑀
𝑥∗ ≤ 𝑅 𝑂

𝑀𝑅2

𝜖
𝑂 𝑛

𝑀𝑅2

𝜖

Accelerated GD

𝑂
𝑀𝑅2

𝜖
𝑂 𝑛

𝑀𝑅2

𝜖

Grad Descent 𝛻𝑓 ≤ 𝐿
𝑥∗ ≤ 𝑅 𝑂

𝐿2𝑅2

𝜖2
𝑂 𝑛

𝐿2𝑅2

𝜖2

??? ??? ???

Newton 2nd Smooth self-conc 𝑂 𝐵 log log ൗ1 𝜖 𝑂 𝑛3𝐵 log log ൗ1 𝜖



Projected Gradient Descent

• Requires access to 1st order oracle
𝑥 → 𝑓 𝑥 , 𝛻𝑓 𝑥

and “projection oracle” for 𝐾:
Π𝐾 𝑥 = argmin

𝑦∈𝐾
𝑥 − 𝑦 2

min
𝑥∈ℝ𝑛

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ 𝐾

Init 𝑥 0 ∈ 𝐾

Iterate 𝑥 𝑘+1 ← Π𝐾 𝑥 𝑘 − 𝑡 𝑘 𝛻𝑓 𝑥 𝑘

𝑥 𝑘

𝑥 𝑘+1



Projected Gradient Descent

• Requires access to 1st order oracle
𝑥 → 𝑓 𝑥 , 𝛻𝑓 𝑥

and “projection oracle” for 𝐾:
Π𝐾 𝑥 = argmin

𝑦∈𝐾
𝑥 − 𝑦 2

min
𝑥∈ℝ𝑛

𝑓(𝑥)

𝑠. 𝑡. 𝑥 ∈ 𝐾

Init 𝑥 0 ∈ 𝐾

Iterate 𝑥 𝑘+1 ← Π𝐾 𝑥 𝑘 − 𝑡 𝑘 𝛻𝑓 𝑥 𝑘

𝜇 ≼ 𝛻2 ≼ 𝑀 𝛻2 ≼ 𝑀, 𝑥∗ ≤ 𝑅 𝛻 ≤ 𝐿, 𝑥∗ ≤ 𝑅 𝛻 ≤ 𝐿, 𝜇 ≼ 𝛻2

GD 𝜅 log 1/𝜖
𝑀 𝑥∗ 2

𝜖

𝐿2 𝑥∗ 2

𝜖2
𝐿2

𝜇𝜖

A-GD 𝜅 log 1/𝜖
𝑀 𝑥∗ 2

𝜖

Smooth: 𝑡 𝑘 = 1/𝑀

Non-smooth: 𝑡 𝑘 =
𝑅

𝐿 𝑘+1

or 𝑡 k =
1

𝜇(𝑘+1)



Projection Oracles
Π𝐾 𝑥 = argmin

𝑦∈𝐾
𝑥 − 𝑦 2

• 𝐾 = 𝑥 ∈ ℝ𝑛 𝑥 2 ≤ 𝑅

Π𝐾 𝑥 =
𝑥

max
𝑥 2
𝑅

,1
𝑂(𝑛) time

• 𝐾 = 𝑥 ∈ ℝ𝑛 𝐴𝑥 = 𝑏

 projection onto the null-space 𝑂(𝑛𝑝) (after pre-processing 𝐴)

• 𝐾 = 𝑥 ∈ ℝ𝑛 𝑥 ≥ 0

Π𝐾 𝑥 = 𝑥 + 𝑂(𝑛) time

• 𝐾 = 𝑋 ∈ 𝑆𝑛 𝑋 ≽ 0

positive eigen-components 𝑂(𝑛3) time
Π𝐾 𝑋 = σ𝑖 𝜆𝑖 +𝑣𝑖𝑣𝑖

⊤ where 𝑋 = σ𝑖 𝜆𝑖𝑣𝑖𝑣𝑖
⊤

• 𝐾 = {𝑥 ∈ ℝ𝑛|𝐴𝑥 ≤ 𝑏}

solve a QP (as hard as a generic QP)

• 𝐾 = 𝐾1 ∩ 𝐾2
in this case: solve a QP 

𝐾1 𝐾2

𝐾
1
∩
𝐾
2

, e.g. 𝐾 = 𝑥 𝐴𝑥 = 𝑏, 𝑥 ≥ 0



Conditional Gradient Descent
(The Frank Wolfe Method)

• Gradient Descent motivated by optimizing 1st order approximation:
𝑓 𝑥 ≈ 𝑓 𝑥 𝑘 + 𝛻𝑓 𝑥 𝑘 , 𝑥 − 𝑥 𝑘

• Optimize only over 𝐾: 𝑦 𝑘 = argmin
𝑦∈𝐾

𝛻𝑓 𝑥 𝑘 , 𝑦

• Then take a step toward 𝑦 𝑘 : 𝑥 𝑘+1 = 𝑥 𝑘 + 𝑡 𝑘 𝑦 𝑘 − 𝑥 𝑘

Requires 1st order oracle for 𝑓, and linear optimization oracle for 𝐾:
𝑐 ↦ argmin

𝑦∈𝐾
𝑐⊤𝑦

Init 𝑥 0 ∈ 𝐾

Iterate 𝑦 𝑘 = argmin
𝑦∈𝐾

𝛻𝑓 𝑥 𝑘 , 𝑦

𝑥 𝑘+1 ← 𝑥 𝑘 + 𝑡 𝑘 𝑦 𝑘 − 𝑥 𝑘

𝑥 𝑘
𝑥 𝑘+1

𝑦 𝑘



Conditional Gradient Descent

Requires 1st order oracle for 𝑓, and linear optimization oracle for 𝐾:
𝑐 ↦ argmin

𝑦∈𝐾
𝑐⊤𝑦

• 𝐾 = 𝑥 𝐴𝑥 = 𝑏, 𝐺𝑥 ≤ ℎ  solve an LP

Reduces QP to a series of LPs

• 𝐾 = 𝑋 ∈ 𝑆𝑛 0 ≼ 𝑋, 𝑡𝑟 𝑋 ≤ 1

argmin
𝑋∈𝐾

⟨𝑋, 𝐶⟩ = eigenvector of −𝐶 with max positive eigenvalue 

Init 𝑥 0 ∈ 𝐾

Iterate 𝑦 𝑘 = argmin
𝑦∈𝐾

𝛻𝑓 𝑥 𝑘 , 𝑦

𝑥 𝑘+1 ← 𝑥 𝑘 + 𝑡 𝑘 𝑦 𝑘 − 𝑥 𝑘

𝑥 𝑘
𝑥 𝑘+1

𝑦 𝑘

Marguerite
Frank

Philip
Wolfe



Conditional Gradient Descent

Requires 1st order oracle for 𝑓, and linear optimization oracle for 𝐾:
𝑐 ↦ argmin

𝑦∈𝐾
𝑐⊤𝑦

Assumptions: ∀𝑥∈𝐾 𝑥 ≤ 𝐾 and 𝛻2𝑓 𝑥 ≼ 𝑀

Then, then with 𝑡 𝑘 =
2

𝑘+1
, find 𝜖-suboptimal after at most

𝑘 = 𝑂
𝑀𝑅

𝜖
iterations

Is strong convexity helpful?  Can we get log 1/𝜖?

Non-smooth objectives?

Acceleration?

Init 𝑥 0 ∈ 𝐾

Iterate 𝑦 𝑘 = argmin
𝑦∈𝐾

𝛻𝑓 𝑥 𝑘 , 𝑦

𝑥 𝑘+1 ← 𝑥 𝑘 + 𝑡 𝑘 𝑦 𝑘 − 𝑥 𝑘



Method Oracle Assumptions # accesses Adtl. runtime

Center of 
Mass

1st

+Separation
if needed

+Projection
if needed

+Projection
or Linear Opt
if needed

+Projection

if needed

|𝑓| ≤ 𝐵
𝑂 𝑛 log

𝐵

𝜖

NA

Ellipsoid
𝑂 𝑛2 log

𝐵

𝜖
𝑂 𝑛4 log

𝐵

𝜖

Vaidya++ ෨𝑂 𝑛 log
𝐵

𝜖
෨𝑂 𝑛3 log

𝐵

𝜖

Grad 
Descent

𝜇 ≼ 𝛻2𝑓 ≼ 𝑀
𝜅 = 𝑀/𝜇
𝑓 ≤ 𝐵

𝑂(𝜅 log ൗ𝐵 𝜖 ) 𝑂(𝑛𝜅 log ൗ𝐵 𝜖 )

Accelerated 
GD

𝑂( 𝜅 log ൗ𝐵 𝜖 ) 𝑂(𝑛 𝜅 log ൗ𝐵 𝜖 )

Grad 
Descent

𝛻2𝑓 ≼ 𝑀
𝑥∗ ≤ 𝑅 𝑂

𝑀𝑅2

𝜖
𝑂 𝑛

𝑀𝑅2

𝜖

Accelerated 
GD 𝑂

𝑀𝑅2

𝜖
𝑂 𝑛

𝑀𝑅2

𝜖

Grad 
Descent

𝛻𝑓 ≤ 𝐿
𝑥∗ ≤ 𝑅 𝑂

𝐿2𝑅2

𝜖2
𝑂 𝑛

𝐿2𝑅2

𝜖2

??? ??? ???

Newton 2nd Smooth self-conc 𝑂 𝐵 log log ൗ1 𝜖 𝑂 𝑛3𝐵 log log ൗ1 𝜖



• Computational Lower Bounds: “any Turing machine (or computer 
program) that solves the problem for every input, must make at least T 
computational steps for some inputs”

• For any natural problem (in particular, any search problem in NP), can 
only get conditional lower bounds: “if (complexity assumption) then 
no efficient alg for X”

• Optimization is in NP (Poly Verifiable): “Find 𝑥 s.t. 𝑥 is feasible and 
𝑓0 𝑥 ≤ 𝑐”

• Very difficult to obtain (even conditional) polynomial lower bounds: 
NP-hard  likely no poly-time. Much harder to prove “there exists 𝑛3

alg but no 𝑛2 alg”.

• What’s the input to optimization?

• The objective function 𝑓?  Code for the function?

Uncomputable to even decides if it does something, let alone optimize. 

• Oracle Lower Bounds:

• “Any method that solves the problem (finds an 𝜖 suboptimal solution) 
for every 𝑓 satisfying our assumptions, must call the oracle provided 
at least T times for some inputs”



• Can we get a lower bound for a specific optimization problem, e.g. specific 
objective 𝑓(⋅)?

• No. For any specific 𝑓, there is always a very simple algorithm: “return 𝑥∗”

• Can maybe give lower bound on #access/runtime of a specific alg. 𝐴:
𝑇 𝐴, 𝑓 ≥ 𝑇

but not lower bound for any algorithm:
min
𝐴

𝑇(𝐴, 𝑓)

• Instead, need to discuss class of problems/objective:
min
𝐴

max
𝑓∈ℱ

𝑇(𝐴, 𝑓)

“Any algorithm must make at least 𝑇 queries for some 𝑓 satisfying the 
assumptions”.

• Crucial to define class ℱ of functions we are considering, e.g.:
ℱ = 𝑓:ℝ𝑛 → ℝ ∀𝑥𝜇 ≼ 𝛻2𝑓 𝑥 ≼ 𝑀

• To get such a lower bound, we need to show that for any possible method 
𝐴, we can construct a “hard” 𝑓 ∈ ℱ.

• How can we do this?





Bear Hunt

ℱ = 𝑓𝑏 𝑥 = ቊ
0 𝑖𝑓 𝑏 = 𝑥
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑏 ∈ 𝐵𝑒𝑎𝑟𝑠

Membership Oracle: 𝑄 ⊆ 𝐵𝑒𝑎𝑟𝑠 → 𝛿𝑏∈𝑄

Claim: for any (deterministic) algorithm 𝐴 with access only to a membership 
oracle, there exists 𝑓𝑏 ∈ ℱ such that the algorithm must make 𝑇 ≥
log2 |𝐵𝑒𝑎𝑟𝑠| membership oracle queries before returning correct answer 

(0.5-suboptimal solution)

• To construct 𝑓𝑏 based on 𝐴, we describe an adversary “playing” against 𝐴.

• Instead of picking bear in advance, adversary maintains set of plausible 
bears 𝐵 consistent with all answers so far.

• For each query 𝑄, provide answer and remove from 𝐵 anything 
inconsistent.

• If algorithm outputs answer while 𝐵 > 1, pick a different 𝑏 ∈ 𝐵. 𝑓𝑏 is the 
“hard” function for algorithm 𝐴.



• Initialize 𝐵 = 𝐵𝑒𝑎𝑟𝑠 and simulate A

• On each query 𝑄:

If 𝐵 ∩ 𝑄 >
𝐵

2
, answer “𝑏 ∈ 𝑄”, 𝐵 ← 𝐵 ∩ 𝑄

otherwise, answer “𝑏 ∉ 𝑄”, 𝐵 ← 𝐵 ∩ 𝑄

• If A stops and outputs ෨𝑏 while 𝐵 > 1, pick 𝑓𝑏 s.t. 𝑏 ∈ 𝐵, 𝑏 ≠ ෨𝑏. 

Claim: after the simulation, for all 𝑏 ∈ 𝐵, all answers are valid for input 𝑓𝑏

Claim: after T queries, 𝐵 ≥ 2−𝑇 ⋅ |𝐵𝑒𝑎𝑟𝑠|

 if A makes < log2 |𝐵𝑒𝑎𝑟𝑠| queries, then 𝐵 > 1

Conclusion: If the A always makes < log2 |𝐵𝑒𝑎𝑟𝑠| queries, it will be 
wrong on 𝑓𝑏

Bear Hunt



Assumptions: 𝑓 is convex and bounded, 𝑓 𝑥 ≤ 1

• Convenience trick: consider what 𝐴 returns as the final query (now we 
just have to show all queries are at “bad” points)

• Goal: for any 𝐴, construct 𝑓 that such that it will take 𝐴 many queries 
before it queries at an 𝜖-suboptimal point.

• Initialize “unexplored segment” 𝐵0 = [−1,1] and 𝑓0 = |𝑥|

• Simulate the algorithm, and for each query 𝑥 𝑘 ,𝑘 = 1. . 𝑇:

• Update 𝐵𝑘 ⊂ 𝐵𝑘−1 such that 𝑥 𝑘 ∉ 𝐵𝑘
• Update 𝑓𝑘 by changing 𝑓𝑘−1 only inside 𝐵𝑘−1

This ensures all previous answers are still valid

Also ensure: all 𝜖-suboptimal points are in 𝐵𝑘
• Answer query 𝑥 𝑘 with 𝛻𝑓𝑘 𝑥 𝑘

min
𝑥∈ℝ

𝑓(𝑥)

𝑠. 𝑡. −1 ≤ 𝑥 ≤ 1



• Initialize “unexplored segment” 𝑙0, 𝑟0 = [−1,1] and 𝑓0 = |𝑥|

We will always have 𝑓𝑘 𝑥 = 2−3𝑘 𝑥 −
𝑙𝑘+𝑟𝑘

2
+ 𝑎𝑘 inside [𝑙𝑘 , 𝑟𝑘]

• Simulate the algorithm, and for each query 𝑥 𝑘 :

• Set 𝑙𝑘 , 𝑟𝑘 ← 𝑙𝑘−1 +
1

14
𝑟𝑘−1 − 𝑙𝑘−1 , 𝑙𝑘−1 +

6

14
𝑟𝑘−1 − 𝑙𝑘−1

or 𝑙𝑘 , 𝑟𝑘 ← 𝑙𝑘−1 +
8

14
𝑟𝑘−1 − 𝑙𝑘−1 , 𝑙𝑘−1 +

13

14
𝑟𝑘−1 − 𝑙𝑘−1

s.t. 𝑥 𝑘 ∉ 𝑙𝑘+1, 𝑟𝑘+1
• Set 𝑓𝑘 𝑥 = 𝑓𝑘−1(𝑥) for 𝑥 ∉ [𝑙𝑘−1, 𝑟𝑘−1] and as follows inside [𝑙𝑘−1, 𝑟𝑘−1]:

• Answer according to 𝑓𝑘

• Claim: 𝑓𝑘 is convex, 𝑓𝑘 𝑥 ≤ 1, and answer 1. . 𝑘 are consistent with 𝑓𝑘

• Claim: ∀𝑥 ∉ [𝑙𝑘 , 𝑟𝑘], 𝑓𝑘 𝑥 ≥ 𝑓𝑘 𝑥𝑘
∗ + 2−3𝑘

5

14

𝑘
> 𝑓𝑘 𝑥𝑘

∗ + 2−5𝑘

𝑙𝑘−1 𝑙𝑘 𝑟𝑘 𝑟𝑘−1

−2−3(𝑘−1)

−2−3𝑘
2−3𝑘

𝑥𝑘
∗



Conclusion: for any algorithm 𝐴 that uses a 1st order oracle and any 𝜖, 
there exists a convex 𝑓: −1,1 → ℝ, 𝑓 𝑥 ≤ 1, such that on input 𝑓, 𝐴

calls the oracle at least 
1

5
log2

1

𝜖
− 1 times before returning an 𝜖-

suboptimal point.

By scaling ሚ𝑓 𝑥 = 𝐵 ⋅ 𝑓(𝑥/𝑅):

for any algorithm 𝐴 that uses a 1st order oracle and any 𝐵,𝑅,𝜖, there exists 
a convex 𝑓: −𝑅, 𝑅 → ℝ, 𝑓 𝑥 ≤ 𝐵, such that on input 𝑓, 𝐴 calls the 

oracle at least 
1

5
log2

𝐵

𝜖
− 1 times before returning an 𝜖-suboptimal point.

Would 2nd order oracle help?

Lower bound holds for 2nd, even 3rd, or any “local” oracle.

min
𝑥∈ℝ

𝑓(𝑥)

𝑠. 𝑡. −1 ≤ 𝑥 ≤ 1−𝑅 𝑅


