Convex Optimization

Prof. Nati Srebro

Lecture 15:;
Gradient Descent with Constraints

Reading: Bubeck Sections 3.1,3.3

Lower Bounds

Reading: Nemirovski “Information Based Complexity” Section 1.1
Further extended reading on n-dimensional lower bound: Section 3.1

Method | Oracle | Assumptions ________| _#accesses | Adtl.runtime

Center
of Mass

Ellipsoid

Vaidya++

Central
Path

1st /
separatlon

2nd

(and log like
barrier for

generalized
inequalities)

<
fol. Ifil < B O(nlog)

Find e-feasible x s.t. , .. B
folx) <p"+e 0(” logZ) 0(" logE)

. . ~ B A B
OR: find feasible x s.t. 0 (nlog—) 0 (n3 log—)

€ €

fox) < mf fo(x) T € [Lee et al 2015]

fo smooth, seIf-conc.
f; quadratic

~ B - B
0 (\/ﬁlogz) 0 (\/ﬁn?’ logz)

|f0|; |fl| S B;

existence of e-strictly feasible X
m||Vf,(x @)1zl < B

Can we do better?

Can we optimize with less than w(n) 1% order accesses?
Without assuming smoothness and self-concordance?
Can we perform iterations faster?

Method ___| Oracle | Assumptions ___| __#accesses __| _Adtl. runtime

1st <
Center of Mass |f| <B 0 (nlog)
.. B
Ellipsoid 0 (nz log—)
€
. - B
Vaidya++ 0 (nlog;)
Grad Descent usVifM 0(xlogB/e)
Accelerated GD e =M/u 0(/xlog B/e)
Grad Descent Vif <M 0 MR?
lx*|l <R €
Accelerated GD
ccelerate MR2
€
Grad Descent VIl <L 0 L?R?
lx*|| <R €2
277 277
Newton P Smooth self-conc O(B loglog 1/6)

B

4 —
O(n loge)
0 (n*1 fi)

n”log—

0 (nk logB/E)
0(nyklogB/e)

(MRZ)
Oln
€

MR?
€

L% R?
0(71 2)
777

0(n3Bloglog1/¢)

n

Projected Gradient Descent

min - f(x)
S.t. x €K
Init x(0 e K

lterate x*D « I, (x(k) — &) Vf(x(k)))

* Requires access to 15t order oracle

and “projection oracle” for K: LY (k1)
Mg (x) = argmin||x — y||,
yeEK

Projected Gradient Descent
mir}l f(x) Smooth: t) = 1/M
;Ef x €K Non-smooth: ¢t (K) = L\/%
— or t0 = 1
Init x® e K plictd)

lterate x*D « I, (x(k) — &) Vf(x(k)))

* Requires access to 15t order oracle

x = f(x),Vf(x)

and “projection oracle” for K:
Mg (x) = argmin||x — y||,
yeEK

k<72 M2 < Ml < RIS LIl < RIS L < 72
LZ

x| 2 2 * 12
W | mllimil M||x*|| L2]|x™ || L”
€ €2 UE
M||x*||*

A-GD +/klogl/e

\1 €

Projection Oracles

[g(x) = arg rynellr{lllx —yll2

K ={x € R"|[|x]l, <R}
Mg (x) = .

max(E12,1)
K = {x € R"|Ax = b}
=» projection onto the null-space 0 (np) (after pre-processing A)
K ={x € R"x =0}

O(n) time

My (x) = |x]+ O(n) time
={X € S| X = 0}
positive eigen- components 0(n3) time

M (X) = Y,;[A;]viv] where X =Y, 4,v,v]
K = {x € R"|Ax < b}

solve a QP (as hard as a generic QP)
K=K/ NnK,,eg K ={x|Ax = b,x = 0}

in this case: solve a QP

Conditional Gradient Descent
(The Frank Wolfe Method)

* Gradient Descent motivated by optimizing 15t order approximation:
fG) = f(x0) + (Pf (x9), x = x®)
» Optimize only over K: y®) = argmin(Vf(x()),y)
yEK

» Then take a step toward y): x(+1) = x(0) 4 (o) (5,(k) _ (k)

Init x© e K
terate y) = argmin(Vf(x®),y)
yeEK

Requires 15t order oracle for f, and linear optimization oracle for K:

¢ & argminc'y 7f(x®)
yeEK

Conditional Gradient Descent

Init

x(@ e K

lterate y) = argmin(Vf(x*)),y)
yeEK

PN

Requires 15t order oracle for f, and linear optimization oracle for K:

c » argminc'y
yeEK

« K ={x|Ax = b,Gx < h} =» solveanlLP
Reduces QP to a series of LPs
e K={XeS"0< X, tr(X) <1}

argmin(X, C) = eigenvector of —C with max positive eigenvalue

XeK

v f (XUO)

y(k)

Conditional Gradient Descent

Init x(0 e K
terate y®) = argmin(Vf(x¥)), y)
yeEK

Requires 15t order oracle for f, and linear optimization oracle for K:
c » argminc'y
yeK

Assumptions: V exllx|| < Kand V2f(x) < M

. 2 .. .
Then, then with t(K) = PR find e-suboptimal after at most

k=20 (%) iterations

Is strong convexity helpful? Can we get log1/€e?
Non-smooth objectives?

Acceleration?

Center of
Mass

Ellipsoid

Vaidya++

Grad
Descent

Accelerated
GD

Grad
Descent

Accelerated
GD

Grad
Descent

?27?

Newton

1st

+Separation
if needed

+Projection
if needed

+Projection
or Linear Opt
if needed

+Projection

if needed

znd

Ifl =B

VAl <L
Ix*ll <R

Smooth self-conc

0 (nlog)
0 (nz log?)
0 (nlogg)
O(xlog5/e)
0(Vrlogh/e)
0 <MR2)
€

MR?

€

L?R?
(")

?27?

O(B loglog 1/6)

B

41 s
O(n oge)
0 (n*1 B)

n ogE

0 (nk logB/E)
0(nvilogB/e)

Oln
€

MR?
€

L%R?
0<n 2)
?7?

0(n3Bloglog1/¢)

n

e Computational Lower Bounds: “any Turing machine (or computer
program) that solves the problem for every input, must make at least T
computational steps for some inputs”

* For any natural problem (in particular, any search problem in NP), can
only get conditional lower bounds: “if (complexity assumption) then
no efficient alg for X”

* Optimization is in NP (Poly Verifiable): “Find x s.t. x is feasible and
folx) <c¢”

* Very difficult to obtain (even conditional) polynomial lower bounds:
NP-hard = likely no poly-time. Much harder to prove “there exists n3

alg but no n? alg”.

* What'’s the input to optimization?
* The objective function f? Code for the function?
Uncomputable to even decides if it does something, let alone optimize.

* Oracle Lower Bounds:

* “Any method that solves the problem (finds an € suboptimal solution)
for every f satisfying our assumptions, must call the oracle provided
at least T times for some inputs”

Can we get a lower bound for a specific optimization problem, e.g. specific
objective f(-)?

No. For any specific f, there is always a very simple algorithm: “return x™”

Can maybe give lower bound on #access/runtime of a specific alg. A:
TAf)=T

but not lower bound for any algorithm:
mAin T(A,f)

Instead, need to discuss class of problems/objective:

min I}leajg(T, f)

“Any algorithm must make at least T queries for some f satisfying the
assumptions”.

Crucial to define class F of functions we are considering, e.g.:
F={f:R" > R|V,u<V?f(x) < M}

To get such a lower bound, we need to show that for any possible method
A, we can construct a “hard” f € F.

How can we do this?

Bear Hunt

?=%um={0”b=x

1 otherwise

b € Bears }

Membership Oracle: Q € Bears — Jp¢q

Claim: for any (deterministic) algorithm A with access only to a membership
oracle, there exists f;, € F such that the algorithm must make T >

[log, |Bears|] membership oracle queries before returning correct answer
(0.5-suboptimal solution)

* To construct f;, based on A, we describe an adversary “playing” against A.

* Instead of picking bear in advance, adversary maintains set of plausible
bears B consistent with all answers so far.

* For each query Q, provide answer and remove from B anything
inconsistent.

e If algorithm outputs answer while |B| > 1, pick a different b € B. f}, is the
“hard” function for algorithm A.

Bear Hunt

* Initialize B = Bears and simulate A
* On each query O:
If |[BNQ|> lz;l, answer “b € Q”, B < BNQ
otherwise, answer “b ¢ Q”, B « BN Q

« If A stops and outputs b while |B| > 1, pick f;, s.t. b € B,b # b.

Claim: after the simulation, for all b € B, all answers are valid for input f;
Claim: after T queries, |B| = 27T - |Bears|
=> if A makes < [log, |Bears|| queries, then |B| > 1

Conclusion: If the A always makes < [log, |Bears|]| queries, it will be
wrong on f,

min [(x)

xER
S.t. —1<x<1

Assumptions: f is convex and bounded, |f(x)| <1

Convenience trick: consider what A returns as the final query (now we
just have to show all queries are at “bad” points)

Goal: for any A, construct f that such that it will take A many queries
before it queries at an e-suboptimal point.

Initialize “unexplored segment” By = [—1,1] and f, = |x|
Simulate the algorithm, and for each query x® k =1..T:
* Update B, C Bj._, such that x(¥) ¢ B,
* Update f;, by changing f;._; only inside By _;
This ensures all previous answers are still valid
Also ensure: all e-suboptimal points are in By,
* Answer query x) with ka(x(k))

* Initialize “unexplored segment” [l,, 15] = [—1,1] and f; = |x]|

We will always have f;, (x) = 273k ‘x T k| + ay, inside [1, 7]

e Simulate the algorithm, and for each query x (k).

* Set [ly, 1%] < [lk 1+_(7”k 1= le—1) L 1+_(Tk 1 — - 1)]
or[ly, 1] < ’lk 1+_(7”k 1= le—1) Lo 1+£(7‘k 1 — L 1)]

s.t.x() ¢ [lk+1»Tk+1]
* Set fi.(x) = fr—1(x) forx & [l;_1,1x—1] and as follows inside [l;_1,7%—1]:

* Answer according to f} _p-3(c=1)

le-1 e X T Tk-1
 Claim: f} is convex, |f;(x)| < 1, and answer 1.. k are consistent with f;

) > fili) +275%

5
14

 Claim: Vx & [y, 7], fi (0) = fi (xp) + 2—3k(

min [(x)

xER
S.t. —R<x<R

Conclusion: for any algorithm A that uses a 15t order oracle and any ¢,
there exists a convex f:[—1,1] - R, [f(x)| < 1, such that oninput f, A

1 1 : :
calls the oracle at least Elogz i 1 times before returning an e-
suboptimal point.

By scaling f(x) = B - f(x/R):
for any algorithm A that uses a 15t order oracle and any B,R,€, there exists
aconvex f:[—R,R] = R, |f(x)| < B, such that on input f, A calls the

1 B . : : :
oracle at least Elogz i 1 times before returning an e-suboptimal point.

Would 2" order oracle help?

Lower bound holds for 29, even 379, or any “local” oracle.

