Convex Optimization

Prof. Nati Srebro

Lecture 18: Course Summary

About the Course

- Methods for solving convex optimization problems, based on oracle access, with guarantees based on their properties
- Understanding different optimization methods
 - Understanding their derivation
 - When are they appropriate
 - Guarantees (a few proofs, not a core component)
- Working and reasoning about opt problems
 - Standard forms: LP, QP, SDP, etc
 - Optimality conditions
 - Duality
 - Using Optimality Conditions and Duality to reason about x^*

Oracles

- $0^{\text{th}}, 1^{\text{st}}, 2^{\text{nd}}$, etc order oracle for function f: $x \mapsto f(x), \nabla f(x), \nabla^2 f(x)$
- Separation oracle for constraint ${\mathcal X}$

$$x \mapsto \begin{cases} x \in \mathcal{X} \\ g \ s. \ t. \ \mathcal{X} \subset \{x' | \langle g, x - x' \rangle < 0\} \end{cases}$$

• Projection oracle for constraint \mathcal{X} (w.r.t. $\|\cdot\|_2$):

$$y \to \arg\min_{x \in \mathcal{X}} ||x - y||_2^2$$

• Linear optimization oracle

$$v \to \arg\min_{x \in \mathcal{X}} \langle v, x \rangle$$

• Prox/projection oracle for function h w.r.t. $\|\cdot\|_2$:

$$y, \lambda \mapsto \arg \min_{x} h(x) + \lambda ||x - y||_{2}^{2}$$

• Stochastic oracle:

 $x \mapsto g \ s.t. \ \mathbb{E}[g] = \nabla f(x)$

Analysis Assumptions

- f is L-Lipschitz (w.r.t $\|\cdot\|$) $|f(x) - f(y)| \le L \|x - y\|$
- f is M-Smooth (w.r.t $\|\cdot\|$)

$$f(x + \Delta x) \le f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{M}{2} \|\Delta x\|^2$$

•
$$f$$
 is λ -strongly convex (w.r.t $\|\cdot\|$)
 $f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{\mu}{2} \|\Delta x\|^2 \le f(x + \Delta x)$

- f is self-concordant $\forall_x \forall_{\text{direction } v} |f_v'''(x)| \le 2f''(x)^{3/2}$
- f is quadratic (i.e. f''' = 0)
- $||x^*||$ is small (or domain is bounded)
- Initial sub-optimality $\epsilon_0 = f(x^{(0)}) p$ is bounded

Overall runtime

(runtime of each iteration) × (number of required iterations)

(oracle runtime) + (other operations)

Contrast to Non-Oracle Methods

- Symbolically solving $\nabla f(x) = 0$
- Gaussian elimination
- Simplex method for LPs

Advantages of Oracle Approach

- Handle generic functions (not only of specific parametric form)
- Makes it clear what functions can be handled, what we need to be able to compute about them
- Complexity in terms of "oracle accesses"
- Can obtain lower bound on number of oracle accesses required

Unconstrained Optimization with 1st Oder Oracle— Dimension Independent Guarantees

		$\mu \preccurlyeq abla^2 \preccurlyeq M$	$ abla^2 \preccurlyeq M$	$\ abla\ \leq L$	$\ abla\ \leq L \ \mu \preccurlyeq abla^2$
	GD	$\frac{M}{\mu}\log 1/\epsilon$	$\frac{M\ x^*\ ^2}{\epsilon}$	$\frac{L^2 \ x^*\ ^2}{\epsilon^2}$	$\frac{L^2}{\mu\epsilon}$
	A-GD	$\sqrt{M/\mu}\log 1/\epsilon$	$\sqrt{\frac{M\ x^*\ ^2}{\epsilon}}$		
resper	Lower bound	$\Omega\left(\sqrt{M/\mu}\log 1/\epsilon\right)$	$\Omega\left(\sqrt{\frac{M\ x^*\ ^2}{\epsilon}}\right)$	$\Omega\left(\frac{L^2 \ x^*\ ^2}{\epsilon^2}\right)$	$\Omega\left(\frac{L^2}{\mu\epsilon}\right)$

Theorem: for any method that uses only 1st order oracle access, there exists a *L*-Lipschitz function with $||x^*|| \le 1$ s.t. at least $\Omega({}^{L^2}/{\epsilon^2})$ oracle accesses are required for the method to find an ϵ -suboptimal solution

Unconstrained Optimization with 1st Oder Oracle— Low Dimensional Guarantees

	#oracle calls	Runtime per iter	Overall runtime
Center of Mass	$n\lograc{1}{\epsilon}$	*	*
Ellipsoid	$n^2 \log \frac{1}{\epsilon}$	n^2	$n^4 \log rac{1}{\epsilon}$
Vaidya [1989]	$ ilde{O}\left(n\lograc{1}{\epsilon} ight)$	$O(n^{3})$	$\tilde{O}\left(n^4\log\frac{1}{\epsilon}\right)$
Vaidya++ [Lee Sidford Wang 2015]	$ ilde{O}\left(n\lograc{1}{\epsilon} ight)$	$\tilde{O}(n^2)$	$\tilde{O}\left(n^3\log\frac{1}{\epsilon}\right)$
Lower Bound	$\Omega\left(n\lograc{1}{\epsilon} ight)$		

Overall runtime

(runtime of each iteration) × (number of required iterations)

Unconstrained Optimization-Practical Methods

	Memory	Per iter	#iter $\mu \preccurlyeq abla^2 \preccurlyeq M$	#iter quadratic
GD	0 (n)	$\nabla f + O(n)$	$\kappa \log 1/\epsilon$	$\kappa \log 1/\epsilon$
A-GD	O(n)	$\nabla f + O(n)$	$\sqrt{\kappa}\log 1/\epsilon$	$\sqrt{\kappa}\log 1/\epsilon$
Momentum	0(n)	$\nabla f + O(n)$		
Conj-GD	O(n)	$\nabla f + O(n)$		$\sqrt{\kappa}\log 1/\epsilon$
L-BFGS	O(rn)	$\nabla f + O(rn)$		
BFGS	$O(n^2)$	$\nabla f + O(n^2)$		$\sqrt{\kappa}\log 1/\epsilon$
Newton	$O(n^2)$	$\nabla^2 f + O(n^3)$	$\frac{f(x^{(0)}+p^*)}{\gamma} + \log \log 1/\epsilon$	1

Constrained Optimization

$$\min_{x\in\mathcal{X}}f(x)$$

- Projected Gradient Descent
 - Oracle: $y \mapsto \arg \min_{x \in \mathcal{X}} ||x y||_2^2$
 - O(n) + projection per iteration
 - Similar iteration complexity to Grad Descent: poly dependence on ε or on κ
- Conditional Gradient Descent:
 - Oracle: $v \to \arg\min_{x \in \mathcal{X}} \langle v, x \rangle$
 - O(n) + linear optimization per iteration
 - $O(M/\epsilon)$ iterations, but no acceleration, no $O(\kappa \log 1/\epsilon)$
- Ellipsoid Method
 - Separation oracle (can handle much more generic \mathcal{X})
 - $O(n^2)$ + separation oracle per itration
 - $O(n^2 \log 1/\epsilon)$ iterations \rightarrow total runtime $O(n^4 \log 1/\epsilon)$

Constrained Optimization – Functional Constraints

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t.}} f_0(x)$$
$$f_i(x) \le 0$$
$$Ax = b$$

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t. \\ Ax = b}} f_0(x)$$

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t.}} f_0(x)$$

$$-f_i(x) \in K_i$$

$$Ax = b$$

- Interior Point Methods
 - Only 1st and 2nd oracle access to f_0 , f_i
 - Analysis when f_0 self concordant and f_i linear or quadratic
 - Overall #Newton Iterations: $O(\sqrt{m} (\log 1/\epsilon + \log \log 1/\delta))$
 - Overall runtime: $\approx O(\sqrt{m}((n+p)^3 + m \nabla^2 \text{ evals}) \log \frac{1}{\epsilon})$
- Can also handle matrix inequalities (SDPs)
- Other cones: need self concordant (log-like) barrier
- "Standard Method" for LPs, QPs, SDPs, etc

Barrier Methods

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t.}} f_0(x) + \sum_{i=1}^m I(f_i(x))$$

- Log barriers $I_t(u) = -\frac{1}{t}\log(-u)$:
 - Analysis and Guarantees
 - "Central Path"
 - Relaxation of KKT conditions

Optimality Condition (assuming Strong Duality)

 x^* optimal for (P) λ^*, ν^* optimal for (D)

$$\frac{\text{KKT Conditions}}{f_i(x^*) \le 0 \forall_{i=1...m}}$$
$$h_j(x^*) = 0 \forall_{j=1...p}$$
$$\lambda_i^* \ge 0 \forall_{i=1..m}$$
$$\nabla_x L(x^*, (\lambda^*, \nu^*)) = 0$$
$$\lambda_i^* f_i(x^*) = 0 \forall_{i=1..m}$$

$$f_0(x)$$
$$p^* = d^*$$
$$g(\lambda, \nu)$$

Optimality Condition for Problem with Log Barrier

 x^* optimal for (P_t) v^* optimal for (D_t)

 $\frac{\text{KKT Conditions}}{f_i(x^*) \le 0 \forall_{i=1...m}}$ $h_j(x^*) = 0 \forall_{j=1...p}$ $\lambda_i^* \ge 0 \forall_{i=1..m}$ $\nabla_x L(x^*, (\lambda^*, \nu^*)) = 0$ $\lambda_i^* f_i(x^*) = \frac{1}{t} \forall_{i=1..m}$

Formulation of LP

1939

KKT

SGD (w/ Monro)

Conditional GD

From Interior Point Methods Back to First Order Methods

- Interior Point Methods (and before them Ellipsoid):
 - $O\left(poly(n)\log\frac{1}{\epsilon}\right)$
 - LP in time polynomial in size of input (number of bits in coefficients)
- But in large scale applications, $O(n^{3.5})$ too high
- First order (and stochastic) methods:
 - Better dependence on n

•
$$poly\left(\frac{1}{\epsilon}\right)$$
 (or $poly(\kappa)$)

Overall runtime

(runtime of each iteration) × (number of required iterations)

(oracle runtime) + (other operations)

Example: ℓ_1 regression

$$f(x) = \sum_{i=1}^{m} |\langle a_i, x \rangle - b_i|$$

• Option 1: Cast as constrained optimization

$$\min_{x \in \mathbb{R}^{n}, t \in \mathbb{R}^{m}} \sum_{i} t_{i} \quad s.t. \quad -t_{i} \leq \langle a_{i}, x \rangle - b_{i} \leq t$$

• Runtime:
$$O(\sqrt{m}(n+m)^3 \log 1/\epsilon)$$

• Options 2: Gradient Descent

•
$$O\left(\frac{\|a\|^2 \|x^*\|^2}{\epsilon^2}\right)$$
 iterations

- O(nm) per iteration \rightarrow overall $O\left(nm\frac{1}{\epsilon^2}\right)$
- Option 3: Stochastic Gradient Descent
 - $O\left(\frac{\|a\|^2 \|x^*\|^2}{\epsilon^2}\right)$ iterations
 - O(n) per iteration \rightarrow overall $O\left(n\frac{1}{\epsilon^2}\right)$

Remember!

Gradient is in dual space---don't take mapping for granted!

Some things we didn't cover

- Technology for unconstrained optimization
 - Different quasi-Newton and conj gradient methods
 - Different line searches
- Technology for Interior Point Primal-Dual methods
- Numerical Issues
- Recent advances in first order and stochastic methods
 - Mirror Descent, Different Geometries, Adaptive Geometries
 - Decomposable functions, partial linearization and acceleration
 - Oth order optimization (using only function values, no derivatives)
- Faster methods for problems with specific forms or properties
 - Message passing for solving LPs
 - Flows and network problems
- Distributed Optimization

Beyond Convex Optimization

Non-Convex Optimization a.k.a. "Non-Linear Programming"

- Many of the ideas and methods, especially for unconstrained optimization, carry over
- Ensuring global optimality is hard, and often impossible
- Some theory for convergence to critical point or local minimum (even this is much harder then for convex)

Current Trends

- Small scale problems:
 - Super-efficient and reliable solvers for use in real-time
- Very large scale problems:
 - Stochastic first order methods
 - Linear time, one-pass or few-pass
- Relationship to Machine Learning

Other Courses

Spring 2018:

• Online Optimization and Decision Making under Uncertainty (Varun Gupta, Booth)

Fall 2018:

- Computational and Statistical Learning Theory (Srebro, TTIC)
- Matrix Computation (Lek-Heng Lim, Statistics)

Winter 2018:

• Stochastic Optimization (John Birge, Booth)

About the Course

- Methods for solving convex optimization problems, based on oracle access, with guarantees based on their properties
- Understanding different optimization methods
 - Understanding their derivation
 - When are they appropriate
 - Guarantees (a few proofs, not a core component)
- Working and reasoning about opt problems
 - Standard forms: LP, QP, SDP, etc
 - Optimality conditions
 - Duality
 - Using Optimality Conditions and Duality to reason about x^*

Final

- Wednesday 9:30am
- Straight-forward questions
- Allowed: anything hand-written by you (not photo-copied)
- In depth: Up to and including Interior Point Methods
 - Unconstrained Optimization
 - Duality
 - Optimality Conditions
 - Interior Point Methods
 - Phase I Methods and Feasibility Problems
- Superficially (a few multiple choice or similar)
 - Other first order and stochastic methods
 - Lower Bounds
 - Simplex, Center of Mass / Ellipsoid
- Not covered: Monday's lecture (prox methods, mirror descent)

 x^* optimal for (P) λ^*, ν^* optimal for (D) $f_{i}(\boldsymbol{x}^{*}) \leq 0 \forall_{i=1...m}$ $h_{j}(\boldsymbol{x}^{*}) = 0 \forall_{j=1...p}$ $\lambda_{i}^{*} \geq 0 \forall_{i=1..m}$ $\nabla_{\boldsymbol{x}} L(\boldsymbol{x}^{*}, (\lambda^{*}, \boldsymbol{\nu}^{*})) = 0$ $\lambda_{i}^{*} f_{i}(\boldsymbol{x}^{*}) = 0 \forall_{i=1..m}$

$$f_0(x)$$
$$p^* = d^*$$
$$g(\lambda, v)$$