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About the Course
• Methods for solving convex optimization problems, 

based on oracle access, with guarantees based on their 
properties

• Understanding different optimization methods
• Understanding their derivation
• When are they appropriate
• Guarantees (a few proofs, not a core component)

• Working and reasoning about opt problems
• Standard forms: LP, QP, SDP, etc
• Optimality conditions
• Duality
• Using  Optimality Conditions and Duality to reason about 𝑥∗



Oracles

• 0th,1st,2nd, etc order oracle for function 𝒇:
𝒙 ↦ 𝒇 𝒙 , 𝛁𝒇 𝒙 , 𝛁𝟐𝒇(𝒙)

• Separation oracle for constraint 𝒳

𝑥 ↦ ቊ
𝑥 ∈ 𝒳

𝑔 𝑠. 𝑡.𝒳 ⊂ 𝑥′ 𝑔, 𝑥 − 𝑥′ < 0

• Projection oracle for constraint 𝒳 (w.r.t. ‖ ⋅ ‖2):

𝑦 → argmin
𝑥∈𝒳

𝑥 − 𝑦 2
2

• Linear optimization oracle

𝑣 → argmin
𝑥∈𝒳

𝑣, 𝑥

• Prox/projection oracle for function ℎ w.r.t. ‖ ⋅ ‖2:

𝑦, 𝜆 ↦ argmin
𝑥

ℎ 𝑥 + 𝜆 𝑥 − 𝑦 2
2

• Stochastic oracle:
𝑥 ↦ 𝑔 𝑠. 𝑡. 𝔼 𝑔 = 𝛻𝑓(𝑥)



Analysis Assumptions

• 𝑓 is 𝐿-Lipschitz (w.r.t ‖ ⋅ ‖)
𝑓 𝑥 − 𝑓 𝑦 ≤ 𝐿 𝑥 − 𝑦

• 𝑓 is 𝑀-Smooth (w.r.t ‖ ⋅ ‖)

𝑓 𝑥 + Δ𝑥 ≤ 𝑓 𝑥 + 𝛻𝑓 𝑥 , Δ𝑥 +
𝑀

2
Δ𝑥 2

• 𝑓 is 𝜆-strongly convex (w.r.t ‖ ⋅ ‖)

𝑓 𝑥 + 𝛻𝑓 𝑥 , Δ𝑥 +
𝜇

2
Δ𝑥 2 ≤ 𝑓 𝑥 + Δ𝑥

• 𝑓 is self-concordant
∀𝑥∀direction 𝑣 𝑓𝑣

′′′ 𝑥 ≤ 2𝑓′′ 𝑥 3/2

• 𝑓 is quadratic (i.e. 𝑓′′′ = 0)

• ‖𝑥∗‖ is small (or domain is bounded)

• Initial sub-optimality 𝜖0 = 𝑓 𝑥 0 − 𝑝 is bounded



Overall runtime

( runtime of each iteration ) × (number of required iterations)

( oracle runtime ) + ( other operations )



Contrast to Non-Oracle Methods

• Symbolically solving 𝛻𝑓(𝑥) = 0

• Gaussian elimination

• Simplex method for LPs



Advantages of Oracle Approach

• Handle generic functions (not only of specific 
parametric form)

• Makes it clear what functions can be handled, what 
we need to be able to compute about them

• Complexity in terms of “oracle accesses”

• Can obtain lower bound on number of oracle 
accesses required



Unconstrained Optimization
with 1st Oder Oracle—

Dimension Independent Guarantees

𝝁 ≼ 𝛁𝟐 ≼ 𝑴 𝛁𝟐 ≼ 𝑴 𝛁 ≤ 𝑳
𝛁 ≤ 𝑳
𝝁 ≼ 𝛁𝟐

GD
𝑀

𝜇
log 1/𝜖

𝑀 𝑥∗ 2

𝜖

𝐿2 𝑥∗ 2

𝜖2
𝐿2

𝜇𝜖

A-GD ൗ𝑀 𝜇 log 1/𝜖
𝑀 𝑥∗ 2

𝜖

Lower bound Ω ൗ𝑀 𝜇 log 1/𝜖 Ω
𝑀 𝑥∗ 2

𝜖
Ω

𝐿2 𝑥∗ 2

𝜖2
Ω

𝐿2

𝜇𝜖

Theorem: for any method that uses only 1st order oracle access, there exists a 

𝐿-Lipschitz function with 𝑥∗ ≤ 1 s.t. at least Ω ൗ𝐿
2

𝜖2 oracle accesses are 

required for the method to find an 𝜖-suboptimal solution

Yuri
Nesterov



Unconstrained Optimization
with 1st Oder Oracle—

Low Dimensional Guarantees

#oracle calls
Runtime per 

iter
Overall
runtime

Center of Mass 𝑛 log
1

𝜖
∗ ∗

Ellipsoid 𝑛2 log
1

𝜖
𝑛2 𝑛4 log

1

𝜖

Vaidya [1989] ෨𝑂 𝑛 log
1

𝜖
𝑂 𝑛3 ෨𝑂 𝑛4 log

1

𝜖

Vaidya++
[Lee Sidford Wang 2015]

෨𝑂 𝑛 log
1

𝜖
෨𝑂 𝑛2 ෨𝑂 𝑛3 log

1

𝜖

Lower Bound Ω 𝑛 log
1

𝜖



Overall runtime

( runtime of each iteration ) × (number of required iterations)



Unconstrained Optimization-
Practical Methods

Memory Per iter
#iter

𝝁 ≼ 𝛁𝟐 ≼ 𝑴
#iter

quadratic

GD 𝑶 𝒏 𝛁𝒇 + 𝑶(𝒏) 𝜿 𝐥𝐨𝐠 𝟏/𝝐 𝜿 𝐥𝐨𝐠 𝟏/𝝐

A-GD 𝑂(𝑛) 𝛻𝑓 + 𝑂(𝑛) 𝜿 𝐥𝐨𝐠 𝟏/𝝐 𝜅 log 1/𝜖

Momentum 𝑂 𝑛 𝛻𝑓 + 𝑂(𝑛)

Conj-GD 𝑂 𝑛 𝛻𝑓 + 𝑂(𝑛) 𝜅 log 1/𝜖

L-BFGS 𝑂(𝑟𝑛) 𝛻𝑓 + 𝑂(𝑟𝑛)

BFGS 𝑂(𝑛2) 𝛻𝑓 + 𝑂(𝑛2) 𝜅 log 1/𝜖

Newton 𝑶 𝒏𝟐 𝛁𝟐𝒇 + 𝑶(𝒏𝟑)
𝒇 𝒙 𝟎 + 𝒑∗

𝜸
+ 𝐥𝐨𝐠 𝐥𝐨𝐠 𝟏/𝝐 1



Constrained Optimization
min
𝑥∈𝒳

𝑓(𝑥)

• Projected Gradient Descent

• Oracle:  𝑦 ↦ argmin
𝑥∈𝒳

𝑥 − 𝑦 2
2

• 𝑂(𝑛) + projection per iteration

• Similar iteration complexity to Grad Descent:
poly dependence on 𝝐 or on 𝜿

• Conditional Gradient Descent:

• Oracle: 𝑣 → argmin
𝑥∈𝒳

𝑣, 𝑥

• 𝑂(𝑛) + linear optimization per iteration

• 𝑂( Τ𝑀 𝜖) iterations, but no acceleration, no 𝑂(𝜅 log Τ1 𝜖)

• Ellipsoid Method

• Separation oracle (can handle much more generic 𝒳)

• 𝑂(𝑛2) + separation oracle per itration

• 𝑂(𝑛2 log Τ1 𝜖) iterations  total runtime 𝑂(𝑛4 log Τ1 𝜖)



Constrained Optimization—
Functional Constraints

• Interior Point Methods

• Only 1st and 2nd oracle access to 𝑓0, 𝑓𝑖
• Analysis when 𝑓0 self concordant and 𝑓𝑖 linear or quadratic

• Overall #Newton Iterations: 𝑂 𝑚 (log Τ1 𝜖 + log log Τ1 𝛿)

• Overall runtime: ≈ 𝑂 𝑚 𝑛 + 𝑝 3 +𝑚 𝛻2 evals log Τ1 𝜖

• Can also handle matrix inequalities (SDPs)

• Other cones: need self concordant (log-like) barrier

• “Standard Method” for LPs, QPs, SDPs, etc

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≤ 0
𝐴𝑥 = 𝑏

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

𝑠. 𝑡. 𝑓𝑖 𝑥 ≼ 0
𝐴𝑥 = 𝑏

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

𝑠. 𝑡. −𝑓𝑖 𝑥 ∈ 𝐾𝑖
𝐴𝑥 = 𝑏



Barrier Methods

• Log barriers 𝐼𝑡 𝑢 = −
1

𝑡
log(−𝑢):

• Analysis and Guarantees

• “Central Path”

• Relaxation of KKT conditions

min
𝑥∈ℝ𝑛

𝑓0 𝑥 + σ𝑖=1
𝑚 𝐼 𝑓𝑖 𝑥

𝑠. 𝑡. 𝐴𝑥 = 𝑏

0

∞

0barrier function penalty function

𝑥∗

𝑓𝑖 𝑥 ≤ 0
𝐴𝑥 = 𝑏



Optimality Condition
(assuming Strong Duality)

𝑥∗ optimal for (P)

𝜆∗, 𝜈∗ optimal for (D)

𝑓𝑖 𝑥
∗ ≤ 0 ∀𝑖=1…𝑚

ℎ𝑗 𝑥
∗ = 0 ∀𝑗=1…𝑝

𝜆𝑖
∗ ≥ 0 ∀𝑖=1..𝑚

𝛻𝑥𝐿 𝑥∗, 𝜆∗, 𝜈∗ = 0

𝜆𝑖
∗𝑓𝑖 𝑥

∗ = 0 ∀𝑖=1..𝑚

KKT Conditions

Albert
Tucker

Harold
Kuhn

William
Karush

𝑝∗=𝑑∗

𝑓0(𝑥)

𝑔(𝜆, 𝜈)



Optimality Condition
for Problem with Log Barrier

𝑥∗ optimal for (𝑃𝑡)

𝜈∗ optimal for (𝐷𝑡)

𝑓𝑖 𝑥
∗ ≤ 0 ∀𝑖=1…𝑚

ℎ𝑗 𝑥
∗ = 0 ∀𝑗=1…𝑝

𝜆𝑖
∗ ≥ 0 ∀𝑖=1..𝑚

𝛻𝑥𝐿 𝑥∗, 𝜆∗, 𝜈∗ = 0

𝜆𝑖
∗𝑓𝑖 𝑥

∗ =
𝟏

𝒕
∀𝑖=1..𝑚

KKT Conditions



Formulation of LP

1939 1947

Simplex

1984Arkadi
Nemirovski

1994Yuri
Nesterov

Narendra
Karmarkar

1989
~1994

1984

George
Dantzig

Leonid
KhachiyanLeonid

Kantorovich

1984Arkadi
Nemirovski

General IP

IP for LP

1972 1979

Ellipsoid
Method

Ellipsoid is
Poly time

for LP

Herbert
Robbins

1951

SGD (w/ Monro)

Non-Smooth
SGD

+ analysis

1978

Marguerite
Frank

Philip
Wolfe

Conditional GD

1956

KKT

John
von Neumann

Duality



From Interior Point Methods
Back to First Order Methods

• Interior Point Methods (and before them Ellipsoid):

• 𝑂 𝑝𝑜𝑙𝑦 𝑛 log
1

𝜖

• LP in time polynomial in size of input (number of bits in 
coefficients)

• But in large scale applications, 𝑂(𝑛3.5) too high

• First order (and stochastic) methods:

• Better dependence on 𝑛

• 𝑝𝑜𝑙𝑦
1

𝜖
(or 𝑝𝑜𝑙𝑦(𝜅))



Overall runtime

( runtime of each iteration ) × (number of required iterations)

( oracle runtime ) + ( other operations )



Example: ℓ1 regression

𝑓 𝑥 =෍

𝑖=1

𝑚

𝑎𝑖 , 𝑥 − 𝑏𝑖

• Option 1: Cast as constrained optimization

min
𝑥∈ℝ𝑛,𝑡∈ℝ𝑚

෍

𝑖

𝑡𝑖 𝑠. 𝑡. −𝑡𝑖 ≤ 𝑎𝑖 , 𝑥 − 𝑏𝑖 ≤ 𝑡

• Runtime: 𝑂( 𝑚 𝑛 +𝑚 3 log Τ1 𝜖)

• Options 2: Gradient Descent

• 𝑂
𝑎 2 𝑥∗ 2

𝜖2
iterations

• 𝑂(𝑛𝑚) per iteration  overall 𝑂 𝑛𝑚
1

𝜖2

• Option 3: Stochastic Gradient Descent

• 𝑂
𝑎 2 𝑥∗ 2

𝜖2
iterations

• 𝑂(𝑛) per iteration  overall 𝑂 𝑛
1

𝜖2



Remember!

• Gradient is in dual space---don’t take mapping for 
granted!

ℝ𝑛 ℝ𝑛 ∗𝑥 𝛻𝑓
𝛻Ψ

𝛻Ψ−1



Some things we didn’t cover
• Technology for unconstrained optimization

• Different quasi-Newton and conj gradient methods

• Different line searches

• Technology for Interior Point Primal-Dual methods

• Numerical Issues

• Recent advances in first order and stochastic methods

• Mirror Descent, Different Geometries, Adaptive Geometries

• Decomposable functions, partial linearization and acceleration

• 0th order optimization (using only function values, no derivatives)

• Faster methods for problems with specific forms or properties

• Message passing for solving LPs

• Flows and network problems

• Distributed Optimization



Beyond Convex Optimization

Non-Convex Optimization a.k.a. “Non-Linear Programming”

• Many of the ideas and methods, especially for unconstrained 
optimization, carry over

• Ensuring global optimality is hard, and often impossible

• Some theory for convergence to critical point or local minimum
(even this is much harder then for convex)



Current Trends

• Small scale problems: 
• Super-efficient and reliable solvers for use in real-time

• Very large scale problems:
• Stochastic first order methods

• Linear time, one-pass or few-pass

• Relationship to Machine Learning



Other Courses

Spring 2018:

• Online Optimization and Decision Making under Uncertainty 
(Varun Gupta, Booth)

Fall 2018:

• Computational and Statistical Learning Theory (Srebro, TTIC)

• Matrix Computation (Lek-Heng Lim, Statistics)

Winter 2018:

• Stochastic Optimization (John Birge, Booth)



About the Course
• Methods for solving convex optimization problems, 

based on oracle access, with guarantees based on their 
properties

• Understanding different optimization methods
• Understanding their derivation
• When are they appropriate
• Guarantees (a few proofs, not a core component)

• Working and reasoning about opt problems
• Standard forms: LP, QP, SDP, etc
• Optimality conditions
• Duality
• Using  Optimality Conditions and Duality to reason about 𝑥∗



Final

• Wednesday 9:30am

• Straight-forward questions

• Allowed: anything hand-written by you (not photo-copied)

• In depth: Up to and including Interior Point Methods

• Unconstrained Optimization

• Duality

• Optimality Conditions

• Interior Point Methods

• Phase I Methods and Feasibility Problems

• Superficially (a few multiple choice or similar)

• Other first order and stochastic methods

• Lower Bounds

• Simplex, Center of Mass / Ellipsoid

• Not covered: Monday’s lecture (prox methods, mirror descent)



𝑥∗ optimal for (P)

𝜆∗, 𝜈∗ optimal for (D)

𝑓𝑖 𝑥
∗ ≤ 0 ∀𝑖=1…𝑚

ℎ𝑗 𝑥
∗ = 0 ∀𝑗=1…𝑝

𝜆𝑖
∗ ≥ 0 ∀𝑖=1..𝑚

𝛻𝑥𝐿 𝑥∗, 𝜆∗, 𝜈∗ = 0

𝜆𝑖
∗𝑓𝑖 𝑥

∗ = 0 ∀𝑖=1..𝑚

𝑝∗=𝑑∗

𝑓0(𝑥)

𝑔(𝜆, 𝜈)

ℝ𝑛 ℝ𝑛 ∗𝑥 𝛻𝑓


