Convex Optimization

Prof. Nati Srebro

Lecture 18:
Course Summary



About the Course

* Methods for solving convex optimization problems,
based on oracle access, with guarantees based on their
properties

* Understanding different optimization methods
* Understanding their derivation
 When are they appropriate
* Guarantees (a few proofs, not a core component)

* Working and reasoning about opt problems
e Standard forms: LP, QP, SDP, etc
e Optimality conditions
* Duality
e Using Optimality Conditions and Duality to reason about x*



Oracles

0th,1%t,2nd, etc order oracle for function f:
x = f(x), Vf(x), VA f(x)

Separation oracle for constraint X

. xeX
x gs.t.X c{x'[{g,x —x") <0}

Projection oracle for constraint X (w.r.t. || - ||,):
— arg min||x —
y g min|| vl
Linear optimization oracle
vV = arg min(v, x
g min(v, x)
Prox/projection oracle for function h w.r.t. || - ||,:
y,A = argminh (x) + A||x — y||5
X

Stochastic oracle:
x— g s.t. E[gl=Vf(x)



Analysis Assumptions

* fis L-Lipschitz (w.r.t || - [|)
() = FOI < Lllx - yll
e fis M-Smooth (w.r.t || - ||)

FOc+ 82) < FG0) -+ (7F(), ) + 5 e

* fis A-strongly convex (w.r.t || - ||)
FG) + (PFGO, A%) + S 1AxII? < f(x +A2)

* f is self-concordant

VyVdirection vl fy (X)] < Zf”(x)B/Z
e fis quadratic (i.e. f'"' = 0)

* ||x*]|| is small (or domain is bounded)

* Initial sub-optimality €5 = f(x(o)) — p is bounded



Overall runtime

( runtime of each iteration ) X (number of required iterations)

/

( oracle runtime ) + ( other operations )



Contrast to Non-Oracle Methods

* Symbolically solving Vf(x) = 0
e Gaussian elimination
e Simplex method for LPs



Advantages of Oracle Approach

* Handle generic functions (not only of specific
parametric form)

 Makes it clear what functions can be handled, what
we need to be able to compute about them

* Complexity in terms of “oracle accesses”

* Can obtain lower bound on number of oracle
accesses required



Unconstrained Optimization
with 15t Oder Oracle—

Dimension Independent Guarantees

e

2 2 2
g © —logl e ulLa Y
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Lower bound Q(/ /Mlogl/e) ( MII?; |2> Q(LZIIx*IIZ) Q(E)

€2 Ue

Theorem: for any method that uses only 1%t order oracle access, there exists a

L-Lipschitz function with [|x*|| < 1 s.t. at least Q(LZ/EZ) oracle accesses are

required for the method to find an e-suboptimal solution



Unconstrained Optimization
with 15t Oder Oracle—
Low Dimensional Guarantees

Runtime per Overall
Horacle calls
iter runtime

Center of Mass n logl
€
Ellipsoid n? log1 n’ n logl
€ €
: ~ 1 3 ~f 4. 1
Vaidya [1989] 0 nlogg 0(n°) O|n logz
Vaidya++ = 1 A (n2 Al 3 1
[Lee Sidford Wang 2015] (" log e) Uy 0 <n log~
1
Lower Bound Q <n logg>



Overall runtime

( runtime of each iteration ) X (number of required iterations)



Unconstrained Optimization-
Practical Methods

Memor #iter #iter
v usVvVisMm quadratic

0O(n) Vf+0(n) Klogl/e Klog1l/e

A-GD 0(n) Vi + 0(n) Vilog1/e Vrlogl/e
Momentum  O(n) Vi + 0(n)

Conj-GD 0(n) Vf + 0(n) Vrlogl/e
L-BFGS O0(rn) Vf + 0(rn)

BFGS O(n?)  Vf+0(n? Vrlogl/e

© 4 o
Newton 0O(n?) V?f+0(n3) UG y+p )+ loglog1/e 1




Constrained Optimization
min f(x)

xeX
* Projected Gradient Descent

e Oracle: y = argmin||lx — y||5
xeX
* O(n) + projection per iteration

e Similar iteration complexity to Grad Descent:
poly dependence on € or on Kk

 Conditional Gradient Descent:
* Oracle: v —» arg min{v, x
gxex< )

* 0(n) + linear optimization per iteration

« 0(M/¢) iterations, but no acceleration, no O (x log 1/¢)
 Ellipsoid Method

e Separation oracle (can handle much more generic X)

e 0(n?) + separation oracle per itration

* 0(n®log1/e) iterations =» total runtime O(n* log 1/¢)



Constrai

Fu

min
XERM
Sl tl

fo(x)

filkx) <0
Ax =b

Nncti

min
xXERMN
Sl tl

fo(x)

filx) <0
Ax =Db

ned Optimization—
onal Constraints

* |Interior Point Methods

 Only 1%t and 2"9 oracle access to fy, f;

min
XERN
Sl tl

fo(x)

—fi(x) € K;
Ax =D

 Analysis when f, self concordant and f; linear or quadratic
* Overall #Newton Iterations: O(v/m (log /¢ + loglog1/5))
» Overall runtime: = 0(vm((n + p)® + m V2 evals) log /¢)

* Can also handle matrix inequalities (SDPs)

e Other cones: need self concordant (log-like) barrier

* “Standard Method” for LPs, QPs, SDPs, etc




Barrier Methods

min
xXERM
S.t.

folx) + X%
Ax =b

1 I(fl-(x))

* Log barriers I;(u) = —%log(—u):

* Analysis and Guarantees
* “Central Path”
e Relaxation of KKT conditions

barrier function

penalty function 0



Optimality Condition
(assuming Strong Duality)

KKT Conditions £ )
x* optimal for (P) )  f(x)<O0Vie1m
A%, v" optimal for (D) {m— hij(x") =0V p o
Ai 2 0Viz1.m o
T L(x*, (A%, v)) =0 GO

/T:fl(x*) =0Vi=1.m




Optimality Condition
for Problem with Log Barrier

KKT Conditions

x* optimal for (P;) )
v* optimal for (D;) \ hi(x) =0Vj=1

VxL(x*, (/1*,1/*)) =0

% % 1
Aifi(x™) =< Vicim



Ellipsoid  Ellipsoid is General IP
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From Interior Point Methods
Back to First Order Methods

* Interior Point Methods (and before them Ellipsoid):

1
N0, (poly(n) logg)
e LP in time polynomial in size of input (number of bits in
coefficients)

e But in large scale applications, O(n3->) too high

 First order (and stochastic) methods:
* Better dependence onn

* poly (f) (or poly(k))



Overall runtime

( runtime of each iteration ) X (number of required iterations)

/

( oracle runtime ) + ( other operations )



Example: €1 regression

FG) = ) Ia,x) = by
i=1

* Option 1: Cast as constrained optimization

xERrTI;I’%rEIRmZ t; s.t. —; = <ai;x> - bi <t

l
 Runtime: 0(vm(n + m)3log1/e)
e Options 2: Gradient Descent
2 *112
e 0 (M) iterations

€2

* O(nm) per iteration =» overall O (nmgiz)

* Option 3: Stochastic Gradient Descent
2 *||2
e 0 (M) iterations

€2

« 0(n) per iteration =» overall O (n i)

€2



Remember!

e Gradient is in dual space---don’t take mapping for
granted!

R® 2) 1 Aﬁw )D
_—




Some things we didn’t cover

Technology for unconstrained optimization
e Different quasi-Newton and conj gradient methods
* Different line searches

Technology for Interior Point Primal-Dual methods

Numerical Issues

Recent advances in first order and stochastic methods
* Mirror Descent, Different Geometries, Adaptive Geometries
 Decomposable functions, partial linearization and acceleration
« Ot order optimization (using only function values, no derivatives)

Faster methods for problems with specific forms or properties
* Message passing for solving LPs
* Flows and network problems

Distributed Optimization



Beyond Convex Optimization

Non-Convex Optimization a.k.a. “Non-Linear Programming”

 Many of the ideas and methods, especially for unconstrained
optimization, carry over

* Ensuring global optimality is hard, and often impossible

* Some theory for convergence to critical point or local minimum
(even this is much harder then for convex)



Current Trends

* Small scale problems:
e Super-efficient and reliable solvers for use in real-time

* Very large scale problems:
 Stochastic first order methods
 Linear time, one-pass or few-pass

* Relationship to Machine Learning



Other Courses

Spring 2018:

* Online Optimization and Decision Making under Uncertainty
(Varun Gupta, Booth)

Fall 2018:
* Computational and Statistical Learning Theory (Srebro, TTIC)
* Matrix Computation (Lek-Heng Lim, Statistics)

Winter 2018:
» Stochastic Optimization (John Birge, Booth)



About the Course

* Methods for solving convex optimization problems,
based on oracle access, with guarantees based on their
properties

* Understanding different optimization methods
* Understanding their derivation
 When are they appropriate
* Guarantees (a few proofs, not a core component)

* Working and reasoning about opt problems
e Standard forms: LP, QP, SDP, etc
e Optimality conditions
* Duality
e Using Optimality Conditions and Duality to reason about x*



Final

Wednesday 9:30am
Straight-forward questions

Allowed: anything hand-written by you (not photo-copied)

In depth: Up to and including Interior Point Methods
Unconstrained Optimization

Duality

Optimality Conditions

Interior Point Methods

Phase | Methods and Feasibility Problems

Superficially (a few multiple choice or similar)
e Other first order and stochastic methods
e Lower Bounds
» Simplex, Center of Mass / Ellipsoid

Not covered: Monday’s lecture (prox methods, mirror descent)



] (R")D

x* optimal for (P) ) f(x) <0V m fo(x)
A", v* optimal for (D) L hj(x*) =0V-1.
/1? =0 vi=1..m pr=d’

VxL(x*, (/1*,1/*)) =0

% . A,
Aifi(x ) =0V;=1m 9(4.v)




